freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

20xx-20xx全國各地中考數學分類:平行四邊形綜合題匯編含詳細答案-資料下載頁

2025-04-01 22:02本頁面
  

【正文】 C,AMEF為正方形,∴∠ABC=∠BAC=45176。,∠MAN=45176。,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45176。=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.點睛:本題是四邊形綜合題目,考查了正方形的性質、等邊三角形的性質、等腰三角形的性質、全等三角形的性質定理和判定定理、相似三角形的性質定理和判定定理等知識;本題綜合性強,有一定難度,證明三角形全等和三角形相似是解決問題的關鍵.13.如圖1,在長方形紙片ABCD中,AB=mAD,其中m?1,將它沿EF折疊(點E.F分別在邊AB、CD上),使點B落在AD邊上的點M處,點C落在點N處,MN與CD相交于點P,其中0n?1.(1)如圖2,當n=1(即M點與D點重合),求證:四邊形BEDF為菱形;(2)如圖3,當(M為AD的中點),m的值發(fā)生變化時,求證:EP=AE+DP;(3)如圖1,當m=2(即AB=2AD),n的值發(fā)生變化時,的值是否發(fā)生變化?說明理由.【答案】(1)證明見解析;(2)證明見解析;(3)值不變,理由見解析.【解析】試題分析:(1)由條件可知,當n=1(即M點與D點重合),m=2時,AB=2AD,設AD=a,則AB=2a,由矩形的性質可以得出△ADE≌△NDF,就可以得出AE=NF,DE=DF,在Rt△AED中,由勾股定理就可以表示出AE的值,再求出BE的值就可以得出結論.(2)延長PM交EA延長線于G,由條件可以得出△PDM≌△GAM,△EMP≌△EMG由全等三角形的性質就可以得出結論.(3)如圖1,連接BM交EF于點Q,過點F作FK⊥AB于點K,交BM于點O,通過證明△ABM∽△KFE,就可以得出,即,由AB=2AD=2BC,BK=CF就可以得出的值是為定值.(1)∵四邊形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90176。.∵AB=mAD,且n=2,∴AB=2AD.∵∠ADE+∠EDF=90176。,∠EDF+∠NDF=90176。,∴∠ADE=∠NDF.在△ADE和△NDF中,∠A=∠N,AD=ND,∠ADE=∠NDF,∴△ADE≌△NDF(ASA).∴AE=NF,DE=DF.∵FN=FC,∴AE=FC.∵AB=CD,∴ABAE=CDCF. ∴BE=DF. ∴BE=DE.Rt△AED中,由勾股定理,得,即,∴AE=AD.∴BE=2ADAD=.∴.(2)如圖3,延長PM交EA延長線于G,∴∠GAM=90176。.∵M為AD的中點,∴AM=DM.∵四邊形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90176。,AB∥CD.∴∠GAM=∠PDM.在△GAM和△PDM中,∠GAM=∠PDM,AM=DM,∠AMG=∠DMP,∴△GAM≌△PDM(ASA).∴MG=MP.在△EMP和△EMG中,PM=GM,∠PME=∠GME,ME=ME,∴△EMP≌△EMG(SAS).∴EG=EP.∴AG+AE=EP.∴PD+AE=EP,即EP=AE+DP.(3),值不變,理由如下:如圖1,連接BM交EF于點Q,過點F作FK⊥AB于點K,交BM于點O,∵EM=EB,∠MEF=∠BEF,∴EF⊥MB,即∠FQO=90176。.∵四邊形FKBC是矩形,∴KF=BC,FC=KB.∵∠FKB=90176。,∴∠KBO+∠KOB=90176。.∵∠QOF+∠QFO=90176。,∠QOF=∠KOB,∴∠KBO=∠OFQ.∵∠A=∠EKF=90176。,∴△ABM∽△KFE.∴即.∵AB=2AD=2BC,BK=CF,∴.∴的值不變.考點:;;;;.14.數學活動課上,老師給出如下問題:如圖,將等腰直角三角形紙片沿斜邊上的高AC剪開,得到等腰直角三角形△ABC與△EFD,將△EFD的直角頂點在直線BC上平移,在平移的過程中,直線AC與直線DE交于點Q,讓同學們探究線段BQ與AD的數量關系和位置關系.請你閱讀下面交流信息,解決所提出的問題.展示交流:小敏:滿足條件的圖形如圖甲所示圖形,延長BQ與AD交于點H.我們可以證明△BCQ≌△ACD,從而易得BQ=AD,BQ⊥AD.小慧:根據圖甲,當點F在線段BC上時,我們可以驗證小慧的說法是正確的.但當點F在線段CB的延長線上(如圖乙)或線段CB的反向延長線上(如圖丙)時,我對小慧說法的正確性表示懷疑.(1)請你幫助小慧進行分析,小敏的結論在圖乙、圖丙中是否成立?請說明理由.(選擇圖乙或圖丙的一種情況說明即可).(2)小慧思考問題的方式中,蘊含的數學思想是 .拓展延伸:根據你上面選擇的圖形,分別取AB、BD、DQ、AQ的中點M、N、P、T.則四邊形MNPT是什么樣的特殊四邊形?請說明理由.【答案】成立;分類討論思想;正方形.【解析】試題分析:利用等腰直角三角形的性質結合全等三角形的判定與性質得出BQ=AD,BQ⊥AD;利用已知條件分類得出,體現數學中的分類討論思想,拓展延伸:利用三角形中位線定理結合正方形的判定方法,首先得出四邊形MNPT是平行四邊形進而得出它是菱形,再求出一個內角是90176。,即可得出答案.試題解析:(1)、成立,理由:如圖乙:由題意可得:∠FDE=∠QDC=∠ABC=∠BAC=45176。, 則DC=QC,AC=BC,在△ADC和△BQC中 ∵, ∴△ADC≌△BQC(SAS), ∴AD=BQ,∠DAC=∠QBC,延長AD交BQ于點F, 則∠ADC=∠BDF, ∴∠BFD=∠ACD=90176。, ∴AD⊥BQ;(2)、小慧思考問題的方式中,蘊含的數學思想是:分類討論思想;拓展延伸:四邊形MNPT是正方形,理由:∵取AB、BD、DQ、AQ的中點M、N、P、T, ∴MNAD,TPAD, ∴MNTP,∴四邊形MNPT是平行四邊形, ∵NPBQ,BQ=AD, ∴NP=MN, ∴平行四邊形MNPT是菱形,又∵AD⊥BQ,NP∥BQ,MN∥AD, ∴∠MNP=90176。, ∴四邊形MNPT是正方形.考點: 幾何變換綜合題15.(本題滿分10分)如圖1,已知矩形紙片ABCD中,AB=6cm,若將該紙片沿著過點B的直線折疊(折痕為BM),點A恰好落在CD邊的中點P處.(1)求矩形ABCD的邊AD的長.(2)若P為CD邊上的一個動點,折疊紙片,使得A與P重合,折痕為MN,其中M在邊AD上,N在邊BC上,如圖2所示.設DP=x cm,DM=y(tǒng) cm,試求y與x的函數關系式,并指出自變量x的取值范圍.(3)①當折痕MN的端點N在AB上時,求當△PCN為等腰三角形時x的值;②當折痕MN的端點M在CD上時,設折疊后重疊部分的面積為S,試求S與x之間的函數關系式【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)S=.【解析】試題分析:(1)根據折疊圖形的性質和勾股定理求出AD的長度;(2)根據折疊圖形的性質以及Rt△MPD的勾股定理求出函數關系式;(3)過點N作NQ⊥CD,根據Rt△NPQ的勾股定理進行求解;(4)根據Rt△ADM的勾股定理求出MP與x的函數關系式,然后得出函數關系式.試題解析:(1)根據折疊可得BP=AB=6cm CP=3cm 根據Rt△PBC的勾股定理可得:AD=3.(2)由折疊可知AM=MP,在Rt△MPD中,∴∴y=-其中,0<x<3.(3)當點N在AB上,x≥3, ∴PC≤3,而PN≥3,NC≥3.∴△PCN為等腰三角形,只可能NC=NP.過N點作NQ⊥CD,垂足為Q,在Rt△NPQ中,∴解得x=.(4)當點M在CD上時,N在AB上,可得四邊形ANPM為菱形.設MP=y(tǒng),在Rt△ADM中,即∴ y=.∴ S=考點:函數的性質、勾股定理.
點擊復制文檔內容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1