freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)壓軸題之平行四邊形(備戰(zhàn)中考題型整理-突破提升)及答案-資料下載頁(yè)

2025-03-30 22:26本頁(yè)面
  

【正文】 ;③S=π;(3)△ABC掃過(guò)的面積為.【解析】試題分析:(1)根據(jù)坐標(biāo)軸上的點(diǎn)的坐標(biāo)特征,結(jié)合一次函數(shù)的解析式求出A、B兩點(diǎn)的坐標(biāo),利用勾股定理即可解答;(2)①因?yàn)锽(0,3),所以O(shè)B=3,所以AB=5,所以AO=ABBO=53=2,所以A(0,2);②過(guò)點(diǎn)C作CF⊥OA與點(diǎn)F,證明△AOB≌△CFA,得到點(diǎn)C的坐標(biāo),求出直線AC解析式,根據(jù)AC∥BD,所以直線BD的解析式的k值與直線AC的解析式k值相同,設(shè)出解析式,即可解答.③利用旋轉(zhuǎn)的性質(zhì)進(jìn)而得出A,B,C對(duì)應(yīng)點(diǎn)位置進(jìn)而得出答案,再利用以BC為半徑90176。圓心角的扇形面積減去以AB為半徑90176。圓心角的扇形面積求出答案;(3)利用平移的性質(zhì)進(jìn)而得出△ABC掃過(guò)的圖形是平行四邊形的面積.試題解析:(1)∵一次函數(shù)y=x+3的圖象與x軸、y軸分別交于A、B兩點(diǎn),∴A(4,0),B(0,3),∴AO=4,BO=3,在Rt△AOB中,AB=,∵等腰直角三角形ABC,∠BAC=90176。,∴BC=;(2)①如圖1,∵B(0,3),∴OB=3,∵AB=5,∴AO=ABBO=53=2,∴A(0,2).當(dāng)在x軸上方時(shí),點(diǎn)A的坐標(biāo)為(0,8),②如圖2,過(guò)點(diǎn)C作CF⊥OA與點(diǎn)F,∵△ABC為等腰直角三角形,∴∠BAC=90176。,AB=AC,∴∠BAO+∠CAF=90176。,∵∠OBA+∠BAO=90176。,∴∠CAF=∠OBA,在△AOB和△CFA中,∴△AOB≌△CFA(AAS);∴OA=CF=4,OB=AF=3,∴OF=7,CF=4,∴C(7,4)∵A(4,0)設(shè)直線AC解析式為y=kx+b,將A與C坐標(biāo)代入得:,解得:,則直線AC解析式為y=x,∵將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)角為90176。時(shí),得到△BDE,∴∠ABD=90176。,∵∠CAB=90176。,∴∠ABD=∠CAB=90176。,∴AC∥BD,∴設(shè)直線BD的解析式為y=x+b1,把B(0,3)代入解析式的:b1=3,∴直線BD的解析式為y=x+3;③因?yàn)樾D(zhuǎn)過(guò)程中AC掃過(guò)的圖形是以BC為半徑90176。圓心角的扇形面積減去以AB為半徑90176。圓心角的扇形面積,所以可得:S=;(3)將△ABC向右平移到△A′B′C′的位置,△ABC掃過(guò)的圖形是一個(gè)平行四邊形和三角形ABC,如圖3:將C點(diǎn)的縱坐標(biāo)代入一次函數(shù)y=x+3,求得C′的橫坐標(biāo)為,平行四邊CAA′C′的面積為(7+)4=,三角形ABC的面積為55=△ABC掃過(guò)的面積為:.考點(diǎn):幾何變換綜合題.14.(本題14分)小明在學(xué)習(xí)平行線相關(guān)知識(shí)時(shí)總結(jié)了如下結(jié)論:端點(diǎn)分別在兩條平行線上的所有線段中,垂直于平行線的線段最短.小明應(yīng)用這個(gè)結(jié)論進(jìn)行了下列探索活動(dòng)和問(wèn)題解決.問(wèn)題1:如圖1,在Rt△ABC中,∠C=90176。,AC=4,BC=3,P為AC邊上的一動(dòng)點(diǎn),以PB,PA為邊構(gòu)造□APBQ,求對(duì)角線PQ的最小值及PQ最小時(shí)的值.(1)在解決這個(gè)問(wèn)題時(shí),小明構(gòu)造出了如圖2的輔助線,則PQ的最小值為 ,當(dāng)PQ最小時(shí)= _____ __;(2)小明對(duì)問(wèn)題1做了簡(jiǎn)單的變式思考.如圖3,P為AB邊上的一動(dòng)點(diǎn),延長(zhǎng)PA到點(diǎn)E,使AE=nPA(n為大于0的常數(shù)).以PE,PC為邊作□PCQE,試求對(duì)角線PQ長(zhǎng)的最小值,并求PQ最小時(shí)的值;問(wèn)題2:在四邊形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如圖4,若為上任意一點(diǎn),以,為邊作□.試求對(duì)角線長(zhǎng)的最小值和PQ最小時(shí)的值.(2)若為上任意一點(diǎn),延長(zhǎng)到,使,再以,為邊作□.請(qǐng)直接寫(xiě)出對(duì)角線長(zhǎng)的最小值和PQ最小時(shí)的值.【答案】問(wèn)題1:(1)3,;(2)PQ=,=.問(wèn)題2:(1)=4,.(2)PQ的最小值為..【解析】試題分析:?jiǎn)栴}1:(1)首先根據(jù)條件可證四邊形PCBQ是矩形,然后根據(jù)條件“四邊形APBQ是平行四邊形可得AP=QB=PC,從而可求的值.(2)由題可知:當(dāng)QP⊥AC時(shí),PQ最?。^(guò)點(diǎn)C作CD⊥AB于點(diǎn)D.此時(shí)四邊形CDPQ為矩形,PQ=CD,在Rt△ABC中,∠C=90176。,AC=4,BC=3,利用面積可求出CD=,然后可求出AD=, 由AE=nPA可得PE=,而PE=CQ=PD=ADAP=,所以AP=.所以=.問(wèn)題2:(1)設(shè)對(duì)角線與相交于點(diǎn).Rt≌Rt.所以AD=HC,QH=AP.由題可知:當(dāng)QP⊥AB時(shí),PQ最小,此時(shí)=CH=4,根據(jù)條件可證四邊形BPQH為矩形,從而QH=BP=AP.所以.(2)根據(jù)題意畫(huà)出圖形,當(dāng) AB時(shí),的長(zhǎng)最小,PQ的最小值為..試題解析:?jiǎn)栴}1:(1)3,;(2)過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D.由題意可知當(dāng)PQ⊥AB時(shí),PQ最短.所以此時(shí)四邊形CDPQ為矩形.PQ=CD,DP=CQ=PE.因?yàn)椤螧CA=90176。,AC=4,BC=3,所以AB=5.所以CD=.所以PQ=.在Rt△ACD中AC=4,CD=,所以AD=.因?yàn)锳E=nPA,所以PE==CQ=PD=ADAP=.所以AP=.所以=.問(wèn)題2:(1)如圖2,設(shè)對(duì)角線與相交于點(diǎn).所以G是DC的中點(diǎn),作QHBC,交BC的延長(zhǎng)線于H,因?yàn)锳D//BC,所以.所以.又,所以Rt≌Rt.所以AD=HC,QH=AP.由圖知,當(dāng) AB時(shí),的長(zhǎng)最小,即=CH=4.易得四邊形BPQH為矩形,所以QH=BP=AP.所以.(若學(xué)生有能力從梯形中位線角度考慮,若正確即可評(píng)分.但講評(píng)時(shí)不作要求)(2)PQ的最小值為..考點(diǎn):1.直角三角形的性質(zhì);2.全等三角形的判定與性質(zhì);3.平行四邊形的性質(zhì);4矩形的判定與性質(zhì).15.(本題滿分10分)如圖1,已知矩形紙片ABCD中,AB=6cm,若將該紙片沿著過(guò)點(diǎn)B的直線折疊(折痕為BM),點(diǎn)A恰好落在CD邊的中點(diǎn)P處.(1)求矩形ABCD的邊AD的長(zhǎng).(2)若P為CD邊上的一個(gè)動(dòng)點(diǎn),折疊紙片,使得A與P重合,折痕為MN,其中M在邊AD上,N在邊BC上,如圖2所示.設(shè)DP=x cm,DM=y(tǒng) cm,試求y與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍.(3)①當(dāng)折痕MN的端點(diǎn)N在AB上時(shí),求當(dāng)△PCN為等腰三角形時(shí)x的值;②當(dāng)折痕MN的端點(diǎn)M在CD上時(shí),設(shè)折疊后重疊部分的面積為S,試求S與x之間的函數(shù)關(guān)系式【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)S=.【解析】試題分析:(1)根據(jù)折疊圖形的性質(zhì)和勾股定理求出AD的長(zhǎng)度;(2)根據(jù)折疊圖形的性質(zhì)以及Rt△MPD的勾股定理求出函數(shù)關(guān)系式;(3)過(guò)點(diǎn)N作NQ⊥CD,根據(jù)Rt△NPQ的勾股定理進(jìn)行求解;(4)根據(jù)Rt△ADM的勾股定理求出MP與x的函數(shù)關(guān)系式,然后得出函數(shù)關(guān)系式.試題解析:(1)根據(jù)折疊可得BP=AB=6cm CP=3cm 根據(jù)Rt△PBC的勾股定理可得:AD=3.(2)由折疊可知AM=MP,在Rt△MPD中,∴∴y=-其中,0<x<3.(3)當(dāng)點(diǎn)N在AB上,x≥3, ∴PC≤3,而PN≥3,NC≥3.∴△PCN為等腰三角形,只可能NC=NP.過(guò)N點(diǎn)作NQ⊥CD,垂足為Q,在Rt△NPQ中,∴解得x=.(4)當(dāng)點(diǎn)M在CD上時(shí),N在AB上,可得四邊形ANPM為菱形.設(shè)MP=y(tǒng),在Rt△ADM中,即∴ y=.∴ S=考點(diǎn):函數(shù)的性質(zhì)、勾股定理.
點(diǎn)擊復(fù)制文檔內(nèi)容
法律信息相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1