freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學-平行四邊形-培優(yōu)練習(含答案)及詳細答案-資料下載頁

2025-03-30 22:20本頁面
  

【正文】 ,∴△EPG≌△CEB,∴EB=PG=x,∴AE=1﹣x,∴S=(1﹣x)?x=﹣x2+x=﹣(x﹣)2+,(0<x<1),∵﹣<0,∴當x=時,S的值最大,最大值為,.考點:四邊形綜合題13.如圖,現(xiàn)有一張邊長為4的正方形紙片ABCD,點P為正方形AD邊上的一點(不與點A、點D重合),將正方形紙片折疊,使點B落在P處,點C落在G處,PG交DC于H,折痕為EF,連接BP、BH.(1)求證:∠APB=∠BPH;(2)當點P在邊AD上移動時,求證:△PDH的周長是定值;(3)當BE+CF的長取最小值時,求AP的長.【答案】(1)證明見解析.(2)證明見解析.(3)2.【解析】試題分析:(1)根據(jù)翻折變換的性質(zhì)得出∠PBC=∠BPH,進而利用平行線的性質(zhì)得出∠APB=∠PBC即可得出答案;(2)首先證明△ABP≌△QBP,進而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)過F作FM⊥AB,垂足為M,則FM=BC=AB,證明△EFM≌△BPA,設AP=x,利用折疊的性質(zhì)和勾股定理的知識用x表示出BE和CF,結(jié)合二次函數(shù)的性質(zhì)求出最值.試題解析:(1)解:如圖1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90176。,∴∠EPH∠EPB=∠EBC∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)證明:如圖2,過B作BQ⊥PH,垂足為Q.由(1)知∠APB=∠BPH,又∵∠A=∠BQP=90176。,BP=BP,在△ABP和△QBP中,∴△ABP≌△QBP(AAS),∴AP=QP,AB=BQ,又∵AB=BC,∴BC=BQ.又∠C=∠BQH=90176。,BH=BH,在△BCH和△BQH中,∴△BCH≌△BQH(SAS),∴CH=QH.∴△PHD的周長為:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH的周長是定值.(3)解:如圖3,過F作FM⊥AB,垂足為M,則FM=BC=AB.又∵EF為折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90176。,∴∠EFM=∠ABP.又∵∠A=∠EMF=90176。,在△EFM和△BPA中,∴△EFM≌△BPA(AAS). ∴EM=AP.設AP=x在Rt△APE中,(4BE)2+x2=BE2.解得BE=2+,∴CF=BEEM=2+x,∴BE+CF=x+4=(x2)2+3.當x=2時,BE+CF取最小值,∴AP=2.考點:幾何變換綜合題.14.已知:如圖,四邊形ABCD和四邊形AECF都是矩形,AE與BC交于點M,CF與AD交于點N.(1)求證:△ABM≌△CDN;(2)矩形ABCD和矩形AECF滿足何種關(guān)系時,四邊形 AMCN是菱形,證明你的結(jié)論.【答案】(1)證明見解析;(2)當AB=AF時,四邊形AMCN是菱形.證明見解析;【解析】試題分析:(1)由已知條件可得四邊形AMCN是平行四邊形,從而可得AM=CN,再由AB=CD,∠B=∠D=90176。,利用HL即可證明;(2)若四邊形AMCN為菱形,則有AM=AN,從已知可得∠BAM=∠FAN,又∠B=∠F=90176。,所以有△ABM≌△AFN,從而得AB=AF,因此當AB=AF時,四邊形AMCN是菱形.試題解析:(1)∵四邊形ABCD是矩形,∴∠B=∠D=90176。,AB=CD,AD∥BC.∵四邊形AECF是矩形,∴AE∥CF.∴四邊形AMCN是平行四邊形.∴AM=CN.在Rt△ABM和Rt△CDN中,AB=CD,AM=CN,∴Rt△ABM≌Rt△CDN.(2)當AB=AF時,四邊形AMCN是菱形.∵四邊形ABCD、AECF是矩形,∴∠B=∠BAD=∠EAF=∠F=90176。.∴∠BAD-∠NAM=∠EAF-∠NAM,即∠BAM=∠FAN.又∵AB=AF,∴△ABM≌△AFN.∴AM=AN.由(1)知四邊形AMCN是平行四邊形,∴平行四邊形AMCN是菱形.考點:1.矩形的性質(zhì);2.三角形全等的判定與性質(zhì);3.菱形的判定.15.(本題滿分10分)如圖1,已知矩形紙片ABCD中,AB=6cm,若將該紙片沿著過點B的直線折疊(折痕為BM),點A恰好落在CD邊的中點P處.(1)求矩形ABCD的邊AD的長.(2)若P為CD邊上的一個動點,折疊紙片,使得A與P重合,折痕為MN,其中M在邊AD上,N在邊BC上,如圖2所示.設DP=x cm,DM=y(tǒng) cm,試求y與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍.(3)①當折痕MN的端點N在AB上時,求當△PCN為等腰三角形時x的值;②當折痕MN的端點M在CD上時,設折疊后重疊部分的面積為S,試求S與x之間的函數(shù)關(guān)系式【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)S=.【解析】試題分析:(1)根據(jù)折疊圖形的性質(zhì)和勾股定理求出AD的長度;(2)根據(jù)折疊圖形的性質(zhì)以及Rt△MPD的勾股定理求出函數(shù)關(guān)系式;(3)過點N作NQ⊥CD,根據(jù)Rt△NPQ的勾股定理進行求解;(4)根據(jù)Rt△ADM的勾股定理求出MP與x的函數(shù)關(guān)系式,然后得出函數(shù)關(guān)系式.試題解析:(1)根據(jù)折疊可得BP=AB=6cm CP=3cm 根據(jù)Rt△PBC的勾股定理可得:AD=3.(2)由折疊可知AM=MP,在Rt△MPD中,∴∴y=-其中,0<x<3.(3)當點N在AB上,x≥3, ∴PC≤3,而PN≥3,NC≥3.∴△PCN為等腰三角形,只可能NC=NP.過N點作NQ⊥CD,垂足為Q,在Rt△NPQ中,∴解得x=.(4)當點M在CD上時,N在AB上,可得四邊形ANPM為菱形.設MP=y(tǒng),在Rt△ADM中,即∴ y=.∴ S=考點:函數(shù)的性質(zhì)、勾股定理.
點擊復制文檔內(nèi)容
法律信息相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1