【總結(jié)】正弦函數(shù)、余弦函數(shù)的性質(zhì)(2)-----1-1-----1-1-----1-1正弦函數(shù)的圖象性質(zhì):(1)定義域(2)值域R.[-1,1].當(dāng)且僅當(dāng)時(shí)取得最大值1,當(dāng)且僅當(dāng)時(shí)取得最小值-1.
2025-06-06 00:28
【總結(jié)】正弦函數(shù)、余弦函數(shù)的性質(zhì)(3)正弦函數(shù)的圖象性質(zhì):(1)定義域(2)值域R.[-1,1].當(dāng)且僅當(dāng)時(shí)取得最大值1,當(dāng)且僅當(dāng)時(shí)取得最小值-1.Zkkx???,??22Zkkx????,??22(3)奇偶性奇函數(shù).(5
2025-06-05 23:39
【總結(jié)】正弦函數(shù)、余弦函數(shù)的性質(zhì)(1)y=sinx、y=cosx的圖象一、復(fù)習(xí):2??23?11?.yxO?2....作出y=sinx,y=cosx,x∈[0,2π]的圖象2??23?.yxO?2....-11與x軸的交點(diǎn)(
2025-06-06 00:10
【總結(jié)】第一章三角函數(shù)三角函數(shù)的圖象與性質(zhì)正弦函數(shù)、余弦函數(shù)的圖象1.了解正弦函數(shù)、余弦函數(shù)的圖象.(重點(diǎn)、易混點(diǎn))2.會(huì)用“五點(diǎn)法”畫出正、余弦函數(shù)的圖象.(重點(diǎn))3.能利用正、余弦函數(shù)的圖象解簡(jiǎn)單問(wèn)題.(難點(diǎn))正弦函數(shù)、余弦函數(shù)的圖象函數(shù)y=sinxy=
2024-11-19 17:33
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)函數(shù)y=Asin(ωx+φ)的圖象(二)學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.若直線y=a與函數(shù)y=sinx的圖象相交,則相鄰的兩交點(diǎn)間的距離的最大值為()B.πD.2π解析:所求最大值,即為y=sinx的一個(gè)周期的長(zhǎng)度2π.答案:D
2024-12-09 03:45
【總結(jié)】21浙江省黃巖中學(xué)高中數(shù)學(xué)《正弦函數(shù)、余弦函數(shù)的性質(zhì)第二課時(shí)》練習(xí)題新人教版必修4【學(xué)習(xí)目標(biāo)、細(xì)解考綱】,余弦函數(shù)的奇偶性、單調(diào)性.,會(huì)求三角函數(shù)的單調(diào)區(qū)間.【知識(shí)梳理、雙基再現(xiàn)】_________________________可知正弦函數(shù)是奇函數(shù).由誘導(dǎo)公式_________________________
2024-12-02 08:37
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)兩角和與差的正弦、余弦、正切公式(二)學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.若tan??????π4+α=3,則tanα的值為()A.-2B.-12D.2解析:tan??????π4+α=3,即1+tanα1-tanα=3,解得tanα
2024-12-09 03:40
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)弧度制學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.2弧度的角所在的象限是()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限解析:∵π2<2<π,∴2弧度的角是第二象限角.答案:B2.圓的半徑變?yōu)樵瓉?lái)的2倍,而弧長(zhǎng)也增加到原來(lái)的2倍,則()A.扇形
2024-12-09 03:48
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)函數(shù)y=Asin(ωx+φ)的圖象(一)學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.把y=sinx的圖象向左平移π2個(gè)單位,得到的圖象的解析式為()A.y=-cosxB.y=sinx+π2C.y=sinx-π2D.y=cosx解析:y=sinx――
【總結(jié)】2020/12/25余弦函數(shù)圖象與性質(zhì)2020/12/25yxo1-12?23?2????2如何作出正弦函數(shù)的圖象(在精確度要求不太高時(shí))?(0,0)(,1)2?(?,0)(,-1)23?(2?,0)五點(diǎn)畫圖法五點(diǎn)法——(0,0)(,1
2024-11-18 12:10
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)兩角和與差的正弦、余弦、正切公式(一)學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.sin62°cos28°+cos62°sin28°的值為()A.-1B.1C.0解析:sin62°cos28°+cos
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)任意角的三角函數(shù)(二)學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.如圖,在單位圓中角α的正弦線、正切線完全正確的是()A.正弦線PM,正切線A′T′B.正弦線MP,正切線A′T′C.正弦線MP,正切線ATD.正弦線PM,正切線AT解析:根據(jù)單位圓中的三角函數(shù)線可知C正確.
2024-12-09 03:47
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)兩角差的余弦公式學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.下列式子中,正確的個(gè)數(shù)為()①cos(α-β)=cosα-cosβ;②cos??????π2+α=sinα;③cos(α-β)=cosαcosβ-sinαsinβ.A.0B.1
2024-12-08 13:12
【總結(jié)】余弦函數(shù)的圖象與性質(zhì)學(xué)習(xí)目標(biāo),應(yīng)掌握余弦函數(shù)圖象的畫法.“五點(diǎn)法”畫出余弦曲線簡(jiǎn)圖.性質(zhì)(定義域、值域、周期性、奇偶性、單調(diào)性)學(xué)法指導(dǎo):平移法:由正弦函數(shù)圖象,結(jié)合誘導(dǎo)公式,通過(guò)圖象變換,得到余弦函數(shù)的圖象.?學(xué)法指導(dǎo):,找出關(guān)鍵點(diǎn),并總結(jié)“五點(diǎn)法”作圖方法
2024-11-17 11:59
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)標(biāo)測(cè)試新人教A版必修41.方程|x|=cosx在(-∞,+∞)內(nèi)()A.沒有根B.有且僅有一個(gè)根C.有且僅有兩個(gè)根D.有無(wú)窮多個(gè)根解析:結(jié)合函數(shù)y=cosx和y=|x|的圖象可知,方程|x|=cosx有且僅有兩根.答案:C2.電流
2024-12-08 07:06