freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

人工智能論文(編輯修改稿)

2024-10-20 21:31 本頁面
 

【文章內(nèi)容簡介】 著硬件和軟件的發(fā)展,計算機的運算能力在以指數(shù)級增長,同時網(wǎng)絡(luò)技術(shù)蓬勃興起,確保計算機已經(jīng)具備了足夠的條件來運行一些要求更高的ai軟件,而且現(xiàn)在的ai具備了更多的現(xiàn)實應用的基礎(chǔ)。90年代以來,人工智能研究又出現(xiàn)了新的高潮最初,人工智能實驗都是游戲性質(zhì)的,主要是下棋一類的游戲。代寫論文選擇游戲作為實驗內(nèi)容并非出于消遣,而是由于它與其它解決問題的方法有頗多的相似之處。做游戲時,必須判斷和決定多種選擇,需作短計劃和長安排。一般都有進攻戰(zhàn)略和防御戰(zhàn)略。必須遵照一定的規(guī)則。要想取得一場游戲的勝利,就必須設(shè)法做到失的最少得的最多。游戲中出現(xiàn)的各種情況都需作出判斷和抉擇,這如同日常生活中經(jīng)常遇到的問題。作出抉擇需要聰明和智慧。在人類解決方法的研究方面,計算機是一個極好的工具。人工智能的兩大目標就是能理解人類的智能,使計算機用途更廣泛。許多研究者認為:智能機器的關(guān)鍵總是如何表達知識,從而使計算機能用這種知識將知識具體應用在計算機程序中雖然必要,但很困難。即使回答日常生活中的極簡單的問題,也需要大量的知識,而且其中許多知識我們是不知道的?,F(xiàn)在主要有兩種類型的機器人:工業(yè)機器人和智能機器人。這兩種類型都是人工智能研究者的研究范圍,但重點在智能機器人上。他們集中力量研究感覺上的認識,以及這些認識如何用計算機來表達,人們已經(jīng)研制出計算機輔助視覺和聽覺裝置、計算機輔助活動肢體和其他用微機控制的假體裝置。用智能機器人來探查海底和太空的奧秘更為實際,因為在這些環(huán)境中工作既艱難又危險。研制一種不需要人參與就能完成探索工作的智能機器人,以便讓他們到宇宙空間去探索。由于這項工作遠離地球,用人類控制的機器人就不適宜了。現(xiàn)在美國國家航空和航天局使用的機器人是完全獨立的,它能采集巖石,收集土壤和其它勘探的研究項目,這些工作都不用人指揮。無論如何,在真正智能化的自主機器人制成之前,研究者們必須首先更深入地掌握、控制人類行為過程的奧秘。通過計算機科學家、神經(jīng)學家、生理學家的共同努力,我們已逐漸對人類的視聽、觸摸、感覺和四肢移動的方法有了更深的了解。但是,還留下一個最困難的、或許也是最重要的領(lǐng)域需要征服———這就是語言。計算機目前還沒能完全理解語言的復雜和細微的差別。至于自然語言的計算機翻譯器,在初期研制階段,對算法上規(guī)范化的句子,就已經(jīng)顯示出相當高的理解力和造句能力。不過,在抓住句子的意思這一點上,還未獲得過顯著的成就。我們懂得的東西大量來自上下文關(guān)系和我們的知識。人們的生活中,個人、社會和文化見解對句子上附著的意義施加了很大的影響,試圖定量表示人類對語言的理解無疑是人工智能研究領(lǐng)域中最復雜的問題之一。在人工智能研究中,使用計算機產(chǎn)生了很多意義深遠的課題。通過人工智能的研究,人們對人類的精神能力和身體能力都有了更深入的了解。在工業(yè)上,人工智能專家們已研制出工業(yè)機器人和智能機器人,以便完成單調(diào)、危險及困難的工作。使人類解放出來,把他們的時間更有效地用于創(chuàng)造性的研究、設(shè)計,以及人們之間的相互交往等人類特有的活動中去,這便是人工智能各種應用的推動力。在醫(yī)學和其它高級科學技術(shù)領(lǐng)域內(nèi),由于人工智能的進展,那些離開計算機就解決不了的難題正獲得解決。人工智能研究工作的進展和困難將會極大地影響人工智能研究的未來。計算機體積的縮小和成本的下降對人工智能的影響不是最重要的,發(fā)展的主要限制來自軟件。語文障礙的克服,或者在什么時候克服,無疑將是今后發(fā)展人工智能的關(guān)鍵。正如我們所看到的那樣,為了使計算機理解自然語言,并具有智能行為,必須使探索、知識表達,自然語言等主要研究領(lǐng)域結(jié)合起來,形成一個系統(tǒng)。與此同時人工智能的研究將繼續(xù)對許多學科產(chǎn)生深遠的影響。第四篇:人工智能學習論文20107932唐雪琴人工智能研究最新進展綜述一、研究領(lǐng)域在大多數(shù)數(shù)學科中存在著幾個不同的研究領(lǐng)域,每個領(lǐng)域都有著特有的感興趣的研究課題、研究技術(shù)和術(shù)語。在人工智能中,這樣的領(lǐng)域包括自然語言處理、自動定理證明、自動程序設(shè)計、智能檢索、智能調(diào)度、機器學習、專家系統(tǒng)、機器人學、智能控制、模式識別、視覺系統(tǒng)、神經(jīng)網(wǎng)絡(luò)、agent、計算智能、問題求解、人工生命、人工智能方法、程序設(shè)計語言等。在過去50多年里,已經(jīng)建立了一些具有人工智能的計算機系統(tǒng);例如,能夠求解微分方程的,下棋的,設(shè)計分析集成電路的,合成人類自然語言的,檢索情報的,診斷疾病以及控制控制太空飛行器、地面移動機器人和水下機器人的具有不同程度人工智能的計算機系統(tǒng)。人工智能是一種外向型的學科,它不但要求研究它的人懂得人工智能的知識,而且要求有比較扎實的數(shù)學基礎(chǔ),哲學和生物學基礎(chǔ),只有這樣才可能讓一臺什么也不知道的機器模擬人的思維。因為人工智能的研究領(lǐng)域十分廣闊,它總的來說是面向應用的,也就說什么地方有人在工作,它就可以用在什么地方,因為人工智能的最根本目的還是要模擬人類的思維。參照人在各種活動中的功能,我們可以得到人工智能的領(lǐng)域也不過就是代替人的活動而已。哪個領(lǐng)域有人進行的智力活動,哪個領(lǐng)域就是人工智能研究的領(lǐng)域。人工智能就是為了應用機器的長處來幫助人類進行智力活動。人工智能研究的目的就是要模擬人類神經(jīng)系統(tǒng)的功能。二、各領(lǐng)域國內(nèi)外研究現(xiàn)狀(進展成果)近年來,人工智能的研究和應用出現(xiàn)了許多新的領(lǐng)域,它們是傳統(tǒng)人工智能的延伸和擴展。在新世紀開始的時候,這些新研究已引起人們的更密切關(guān)注。這些新領(lǐng)域有分布式人工智能與艾真體(agent)、計算智能與進化計算、數(shù)據(jù)挖掘與知識發(fā)現(xiàn),以及人工生命等。下面逐一加以概略介紹。分布式人工智能與艾真體分布式人工智能(Distributed AI,DAI)是分布式計算與人工智能結(jié)合的結(jié)果。DAI系統(tǒng)以魯棒性作為控制系統(tǒng)質(zhì)量的標準,并具有互操作性,即不同的異構(gòu)系統(tǒng)在快速變化的環(huán)境中具有交換信息和協(xié)同工作的能力。分布式人工智能的研究目標是要創(chuàng)建一種能夠描述自然系統(tǒng)和社會系統(tǒng)的精確概念模型。DAI中的智能并非獨立存在的概念,只能在團體協(xié)作中實現(xiàn),因而其主要研究問題是各艾真體間的合作與對話,包括分布式問題求解和多艾真體系統(tǒng)(Multiagent System,MAS)兩領(lǐng)域。其中,分布式問題求解把一個具體的求解問題劃分為多個相互合作和知識共享的模塊或結(jié)點。多艾真體系統(tǒng)則研究各艾真體間智能行為的協(xié)調(diào),包括規(guī)劃、知識、技術(shù)和動作的協(xié)調(diào)。這兩個研究領(lǐng)域都要研究知識、資源和控制的劃分問題,但分布式問題求解往往含有一個全局的概念模型、問題和成功標準,而MAS則含有多個局部的概念模型、問題和成功標準。MAS更能體現(xiàn)人類的社會智能,具有更大的靈活性和適應性,更適合開放和動態(tài)的世界環(huán)境,因而倍受重視,已成為人工智能以至計算機科學和控制科學與工程的研究熱點。當前,艾真體和MAS的研究包括理論、體系結(jié)構(gòu)、語言、合作與協(xié)調(diào)、通訊和交互技術(shù)、MAS學習和應用等。MAS已在自動駕駛、機器人導航、機場管理、電力管理和信息檢索等方面獲得應用。計算智能與進化計算計算智能(Computing Intelligence)涉及神經(jīng)計算、模糊計算、進化計算等研究領(lǐng)域。其中,神經(jīng)計算和模糊計算已有較長的研究歷史,而進化計算則是較新的研究領(lǐng)域。在此僅對進化計算加以說明。進化計算(Evolutionary Computation)是指一類以達爾文進化論為依據(jù)來設(shè)計、控制和優(yōu)化人工系統(tǒng)的技術(shù)和方法的總稱,它包括遺傳算法(Genetic Algorithms)、進化策略(Evolutionary Strategies)和進化規(guī)劃(Evolutionary Programming)。它們遵循相同的指導思想,但彼此存在一定差別。同時,進化計算的研究關(guān)注學科的交叉和廣泛的應用背景,因而引入了許多新的方法和特征,彼此間難于分類,這些都統(tǒng)稱為進化計算方法。目前,進化計算被廣泛運用于許多復雜系統(tǒng)的自適應控制和復雜優(yōu)化問題等研究領(lǐng)域,如并行計算、機器學習、電路設(shè)計、神經(jīng)網(wǎng)絡(luò)、基于艾真體的仿真、元胞自動機等。達爾文進化論是一種魯棒的搜索和優(yōu)化機制,對計算機科學,特別是對人工智能的發(fā)展產(chǎn)生了很大的影響。大多數(shù)生物體通過自然選擇和有性生殖進行進化。自然選擇決定了群體中哪些個體能夠生存和繁殖,有性生殖保證了后代基因中的混合和重組。自然選擇的原則是適者生存,即物競天擇,優(yōu)勝劣汰。直到幾年前,遺傳算法、進化規(guī)劃、進化策略三個領(lǐng)域的研究才開始交流,并發(fā)現(xiàn)它們的共同理論基礎(chǔ)是生物進化論。因此,把這三種方法統(tǒng)稱為進化計算,而把相應的算法稱為進化算法。數(shù)據(jù)挖掘與知識發(fā)現(xiàn)知識獲取是知識信息處理的關(guān)鍵問題之一。20世紀80年代人們在知識發(fā)現(xiàn)方面取得了一定的進展。利用樣本,通過歸納學習,或者與神經(jīng)計算結(jié)合起來進行知識獲取已有一些試驗系統(tǒng)。數(shù)據(jù)挖掘和知識發(fā)現(xiàn)是90年代初期新崛起的一個活躍的研究領(lǐng)域。在數(shù)據(jù)庫基礎(chǔ)上實現(xiàn)的知識發(fā)現(xiàn)系統(tǒng),通過綜合運用統(tǒng)計學、粗糙集、模糊數(shù)學、機器學習和專家系統(tǒng)等多種學習手段和方法,從大量的數(shù)據(jù)中提煉出抽象的知識,從而揭示出蘊涵在這些數(shù)據(jù)背后的客觀世界的內(nèi)在聯(lián)系和本質(zhì)規(guī)律,實現(xiàn)知識的自動獲取。這是一個富有挑戰(zhàn)性、并具有廣闊應用前景的研究課題。從數(shù)據(jù)庫獲取知識,即從數(shù)
點擊復制文檔內(nèi)容
外語相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1