【總結(jié)】第5章三角函數(shù)問題游樂場的摩天輪,每一個轎廂掛在一個旋臂上,小明與小華兩人同時登上摩天輪,旋臂轉(zhuǎn)過一圈后,小明下了摩天輪,小華繼續(xù)乘坐一圈.那么,小華走下來時,旋臂轉(zhuǎn)過的角度是多少呢?創(chuàng)設(shè)情景興趣導(dǎo)入問題用活絡(luò)扳手旋松螺母,當(dāng)扳手按逆時針方向
2024-08-04 00:23
【總結(jié)】sinAaAc???的對邊斜邊cosAbAc???的鄰邊斜邊tanAaAb????的對邊A的鄰邊三角函數(shù)正弦余弦正切ABCabc腦中有“圖”,心中有“式”假如∠A=30°,你能求出sin3
2024-11-28 22:44
【總結(jié)】任意角的三角函數(shù)任意角的三角函數(shù)第一課時問題提出,具體怎樣理解?(1)角是由平面內(nèi)一條射線繞其端點(diǎn)從一個位置旋轉(zhuǎn)到另一個位置所組成的圖形.(2)按逆時針方向旋轉(zhuǎn)形成的角為正角,按順時針方向旋轉(zhuǎn)形成的角為負(fù)角,沒有作任何旋轉(zhuǎn)形成的角為零角.(3)角
2024-09-27 23:23
【總結(jié)】三角函數(shù)公式兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tan(A-B)=cot(A+B)=cot(A-B)=倍角公式tan2A
2024-08-01 20:29
2024-08-02 07:31
【總結(jié)】§任意角的三角函數(shù)設(shè)是任意角,的終邊上任意一點(diǎn)的坐標(biāo)是,當(dāng)角在第一、二、三、四象限時的情形,它與原點(diǎn)的距離為,則.??P??yx,?r02222?????yxyxr任意角的三角函數(shù)1、定義:①比值叫做的正弦,記作,即.
2024-08-04 15:42
【總結(jié)】數(shù)學(xué)輔導(dǎo)講義年級:高一授課類型任意角的三角函數(shù)教學(xué)內(nèi)容初中銳角的三角函數(shù)是如何定義的?在中,設(shè)對邊為,對邊為,對邊為,銳角的正弦、余弦、正切依次為.角推廣后,這樣的三角函數(shù)的定義不再適用,我們必須對三角函數(shù)重新定義。1.三角函數(shù)定義在直角坐標(biāo)系中,
2025-05-16 00:51
【總結(jié)】任意角的三角函數(shù)(2)P(-3,y)是角α終邊上一點(diǎn),且sinα=,則y的值是。θ的終邊上一點(diǎn)P(x,-2)(x≠0),且cosθ=求cosθ和tanθ的值。α的終邊上一點(diǎn)P與A(a,b)關(guān)于x軸
2024-11-06 20:47
【總結(jié)】f(x)=tanx,x?(0,),若x1,x2?(0,),且x1?x2.證明:[f(x1)+f(x2)]f().x1+x22122?2?證:tanx1+tanx2=+sinx1cosx1sinx2cosx2s
2024-11-12 18:32
【總結(jié)】三角函數(shù)圖象與性質(zhì)的應(yīng)用例1求下列函數(shù)最小正周期(1)函數(shù)(2)函數(shù)例2函數(shù)y=tan在一個周期內(nèi)的圖象是()xyoxyoxyoxyo(A)(B)(C)(D)例3函數(shù)y=-xcosx的部分圖象
2024-11-09 07:18
【總結(jié)】三角函數(shù)性質(zhì)及三角函數(shù)公式總結(jié)函數(shù)類型正弦函數(shù)y=sinx余弦函數(shù)y=cosx正切函數(shù)y=tanx函數(shù)值域[-1,1][-1,1]R函數(shù)定義域RR函數(shù)最值點(diǎn)最大值:最小值:最大值:最小值:無最大值與最小值函數(shù)周期性T=2πT=2πT=π函數(shù)單調(diào)性增區(qū)
2025-06-16 22:04
【總結(jié)】什么也不問的人什么也學(xué)不到。Hewhonothingquestions,nothinglearns.什么也不問的人什么也學(xué)不到。Hewhonothingquestions,nothinglearns.一.復(fù)習(xí)引入:圖形定義定義域A
2024-11-09 01:45
【總結(jié)】......兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAco
2025-06-30 23:28
【總結(jié)】三角函數(shù)的微分法與二階導(dǎo)數(shù)14三角函數(shù)的微分法xxxcos)(sindd1?定理證明:xxxxxxx???????sin)sin(lim)(sindd0xxxxx?????????????2sin22cos2lim022sin
2024-08-04 12:09
【總結(jié)】第3課時特殊角的三角函數(shù)值學(xué)前溫故新課早知在Rt△ABC中,∠C=90°,我們把∠A的對邊與斜邊的比叫做∠A的,記作sinA,即==;把∠A的鄰邊與斜邊的比叫做∠A的,記作cosA,即cosA==;把∠A的對邊與鄰邊的比叫做
2025-06-17 20:12