【總結(jié)】ABCD軸對稱與等腰三角形練習題一.填空題(-2,1)關(guān)于x軸的對稱點是,關(guān)于y軸的對稱點是P1(a,3)和點P2(-2,b)關(guān)于y軸對稱,則a=,b=;若關(guān)于x軸對稱,則a=,b=P1(a,3)和點P2(
2024-11-26 21:30
【總結(jié)】等腰三角形和直角三角形專項練習題1、選擇題°,底邊上的高為9cm,則腰長為()cm. D.,斜邊上的中線長為3.則直角三角形的面積為(??) ,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC于M,連接CD.下列結(jié)論:①AC+CE=AB;②CD=
2025-03-25 06:57
【總結(jié)】等腰三角形--------性質(zhì)(第一課時)教學目標◆1、經(jīng)歷利用軸對稱變換推導等腰三角形的性質(zhì),并加深對軸對稱變換的認識.◆2、掌握等腰三角形的下列性質(zhì):等腰三角形的兩個底角相等;等腰三角形三線合一.◆3、會利用等腰三角形的性質(zhì)進行簡單的推理、判斷、計算和作圖.教學重點與難點◆教學重點:本節(jié)教學的重點是理解并掌握等腰三角形的
2024-11-18 23:47
【總結(jié)】......等腰三角形考點一、等腰三角形的特征和識別⑴等腰三角形的兩個_____________相等(簡寫成“________________”)⑵等腰三角形的_________________、__________
2025-04-17 08:21
【總結(jié)】八年級上冊等腰三角形(第2課時)問題等腰三角形性質(zhì)定理的內(nèi)容是什么?這個命題的題設(shè)和結(jié)論分別是什么?性質(zhì)定理的條件是:一個三角形中有兩條邊相等.結(jié)論:這兩條邊所對的角相等.探索等腰三角形的判定定理作頂角的平分線或底邊上的高或底邊的中線,將一個三角形的問題轉(zhuǎn)化為兩個全等三
2024-11-24 17:30
【總結(jié)】如圖,在四邊形ABCD中,對角線AC,BD交于點E,∠BAC=90°,∠CED=45°,∠DCE=30°,?,?。求CD的長和四邊形ABCD的面積。已知:如圖,銳角△ABC的兩條高BD、CE相交于點O,且OB=OC.?(1)求證:△ABC是等腰三角形;?(2)判斷點O是否在∠BAC的角平分線上,并說明理由.
2025-03-24 02:16
【總結(jié)】《等腰三角形》優(yōu)秀說課設(shè)計一、說教材分析:二、1.教材內(nèi)容:三、本課是等腰三角形,本課內(nèi)容在初中數(shù)學教學中起著比較重要的作用。通過等腰三角形的特征反映在一個三角形中等邊對等角關(guān)系,并且對軸對稱圖形特征的直觀反映(三線合一),對以后直角三角形和相似三角形學習起到相當重要的作用。四、2、教學目標:[來源:Z#xx#
2024-11-19 06:06
【總結(jié)】等腰三角形羅源三中黃招良圖中有些你熟悉的圖形嗎?圖中有些你熟悉的圖形嗎?它們有什么共同特點?北京五塔寺西安半坡博物館斜拉橋梁體育觀看臺架埃及金字塔
2024-08-10 13:41
【總結(jié)】第一篇:等腰三角形 全等三角形 一、教學目標 探索并掌握兩個三角形全等的條件:“ASA”“AAS”, 經(jīng)歷作圖、比較、證明等探究過程,提高分析、作圖、歸納、表達、邏輯推理等能力;并通過對知識方...
2024-11-15 06:05
【總結(jié)】等腰三角形(三)◆隨堂檢測1一個等邊三角形的角平分線、高、中線的總條數(shù)為_________.,已知線段AB,分別以AB、為圓心,大于12AB長為半徑畫弧,兩弧相交于點C、Q,連結(jié)CQ與AB相交于點D,連結(jié)AC,BC.那么:(1)∠ADC?________度;(2)當線段4
2024-11-13 01:46
【總結(jié)】第一章三角形的證明1.等腰三角形(三)湖北宜昌市長江中學李玉平一、學生知識狀況分析本節(jié)課是等腰三角形的第三課時,通過前面兩課時的學習,學生已經(jīng)掌握了等腰三角形的相關(guān)性質(zhì),并知道了用綜合法證明命題的基本要求和步驟。為學習等腰三角形的判定定理奠定了知識和方法的基礎(chǔ)。二、教學任務(wù)分析本節(jié)課的主要任務(wù)是探索等
2024-11-24 17:07
【總結(jié)】直角三角形基礎(chǔ)能力訓練★回歸教材注重基礎(chǔ)◆對直角三角形性質(zhì)的認識,有一個銳角為°,那么另一個銳角的度數(shù)為______.Rt△ABC中,∠C=90°,∠A-∠B=30°,那么∠A=____,∠B=_____.—8,在△ABC中,∠ACB=90°,
2024-11-15 15:41
【總結(jié)】(n-2)×180°三角形與三角形有關(guān)的線段a-b<c<a+b(a-b>0)高三角形的邊三角形的三邊關(guān)系中線角平分線的定義位置、交點三角形的內(nèi)角和多邊形的內(nèi)角和多邊形的外角和三角形的外角和多邊形外角和為360°鑲嵌的原理
2024-12-07 16:28
【總結(jié)】解直角三角形典例分析例1下表是小明同學填寫的實習報告的部分內(nèi)容:題目在兩岸近似平行的河段上測量河流測量目標如圖21-4-1所示測得數(shù)據(jù)∠CAD=60°,AB=20米,∠CBD=45°,∠BDC=90°請你根據(jù)以上的條件,計算出河寬CD(結(jié)果保留根號).思路分析
【總結(jié)】◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三
2025-06-15 12:08