【總結(jié)】專題課堂(八)三角形中位線的應(yīng)用第23章圖形的相似類型:(1)三角形中線的應(yīng)用;(2)三角形中位線的應(yīng)用;(3)三角形重心的應(yīng)用.【例1】(1)如圖①,在四邊形ADBC中,AB與CD相交于點O,AB=CD,E,F(xiàn)分別是BC,AD的中點,連結(jié)EF,分別交DC,AB于點M,
2025-10-31 07:18
【總結(jié)】第六章平行四邊形3三角形的中位線良田回民學校高華創(chuàng)設(shè)情景,導入課題思考:怎樣將一張三角形紙片剪成兩部分,使分成的兩部分能拼成一個平行四邊形?操作:(1)剪一個三角形,記為△ABC(2)分
2024-11-22 00:39
【總結(jié)】研究生活的人才能從生活中得到教訓克柳切夫斯基三角形的中位線ABCDE連結(jié)三角形兩邊中點的線段叫做三角形的中位線一個三角形共有三條中位線F?三角形中位線定義:?中位線就是中線嗎?它們有那些異同點?EDCBAFCBA中位線是兩邊中點的連線,而中線是一個頂點和對邊
2025-10-28 18:15
【總結(jié)】三角形中三條重要的線段三角形的概念:由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形.邊頂點內(nèi)角(角)組成三角形的線段叫做三角形的相鄰兩邊的公共端點叫做三角形的相鄰兩邊所組成的角叫做三角形的:ABC用“△”加上三個頂點的字母表示,例如:
2025-10-28 15:53
【總結(jié)】作業(yè)布置評價小結(jié)鞏固練習講授新課復習判定兩個三角形全等要具備什么條件?
2025-10-31 03:54
2025-08-16 01:10
【總結(jié)】三角形全等的判定第1課時全等三角形與全等三角形的判定條件1.的兩個三角形叫做全等三角形,全等三角形的對應(yīng)邊____,對應(yīng)角____.2.兩個三角形只有一組或兩組對應(yīng)相等的元素,這兩個三角形全等;兩個三角形有三組對應(yīng)相等的元素,這兩個三角形
2025-10-31 04:27
【總結(jié)】問題:A,B兩地被池塘隔開,如何測量A、B兩地之間的距離呢?創(chuàng)設(shè)情境導入新課利用全等三角形的知識.DABC.E三角形的中位線銀川十四中李麗新FABC中點●●●ED中點概念形成你還能畫出幾條三角形的中位線?
2024-11-21 05:06
【總結(jié)】1相似三角形相似三角形的概念2在相似多邊形中,最為簡單的就是相似三角形﹡相似三角形的定義:對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形相似。3∠A=∠A′,∠B=∠B′,∠C=∠C′ACCACBBCBAAB????????△ABC∽△
2025-10-02 14:31
【總結(jié)】例1在ΔABC中,∠A+∠B=100°,∠C=2∠B.求∠A,∠B,∠C解:在ΔABC中,∠A+∠B=100°所以,∠C=180°-(∠A+∠B)=180°-100°=80&
2025-11-01 22:38
【總結(jié)】第十一章三角形三角形的邊八年級上冊咸寧市咸安區(qū)教育局教研室王格林創(chuàng)設(shè)情景,引入新課提出問題小組合作看了生活中的三角形實例,結(jié)合你以前對三角形的了解,應(yīng)該怎樣給三角形下一定義呢?(讓學生分組討論,然后讓各組派一個代表發(fā)言)結(jié)合學生的發(fā)言,辯析如下圖形是不是三角形?傳授新知
2025-08-01 13:28
【總結(jié)】三角形的外角ABCD三角形的外角:三角形的一邊與另一邊的反向延長線組成的角.畫圖并思考:畫一個△ABC,你能畫出它的所有外角來嗎?請動手試一試.同時想一想△ABC的外角共有幾個呢?歸納:每一個三角形都有6個外角.每一個頂點相對應(yīng)的外角都有2個.每
2025-07-18 00:05
【總結(jié)】三角形的復習筠門嶺初中八年級數(shù)學組授課教師:胡家培全等三角形(1)兩個能夠完全重合的三角形叫全等三角形,(2)全等三角形的對應(yīng)角相等,對應(yīng)邊相等。(3)判定兩個三角形全等的公理或定理:①一般三角形有SAS、SSS。②千萬不要將SSA條件作為SAS條件來用。1
2025-07-17 23:57