【文章內(nèi)容簡(jiǎn)介】
【返回值】無(wú)?!緜渥ⅰ吭摵瘮?shù)是用于停止識(shí)別,當(dāng)調(diào)用此函數(shù)時(shí),F(xiàn)IQ_TMA中斷將關(guān)閉。中斷過(guò)程:【API格式】ASM:_BSR_FIQ_Routine【功能說(shuō)明】在中斷中調(diào)用?!緟?shù)】無(wú)。【返回值】無(wú)?!緜渥ⅰ竣僭摵瘮?shù)在中斷FIQ_TMA中調(diào)用;②當(dāng)主程序調(diào)用BSR_InitRecognizer(int AudioSource)時(shí),辨識(shí)器便打開(kāi)8K采樣率的FIQ_TMA中斷并開(kāi)始將采樣的語(yǔ)音數(shù)據(jù)填入辨識(shí)器的數(shù)據(jù)隊(duì)列中;③應(yīng)用程序需要設(shè)置一下程序段在FIQ_TMA中。 其它語(yǔ)音識(shí)別API介紹BSR_PauseRecognizer()暫停識(shí)別,但不釋放中斷等資源BSR_ResumeRecognizer()恢復(fù)被暫停的識(shí)別BSR_GetRecognizerScore()獲得識(shí)別結(jié)果的可信度,返回值從4096到4096,數(shù)值越大表示輸入語(yǔ)音與特征模型的匹配度越高。BSR_EnableCPUIndicator()開(kāi)啟CPU狀態(tài)監(jiān)測(cè)功能。開(kāi)啟該功能后,IOA0和IOA1將發(fā)出每16ms電平變化一次的方波。BSR_DisableCPUIndicator()關(guān)閉CPU狀態(tài)監(jiān)測(cè)功能。BSR_ExportSDWord(int CommandID)使用函數(shù)庫(kù)時(shí),會(huì)自動(dòng)創(chuàng)建一個(gè)100Word的數(shù)組BSR_SDModel[100],可以把某條訓(xùn)練命令的特征模型數(shù)據(jù)導(dǎo)出到這個(gè)數(shù)組中。BSR_ImportSDWord(int CommandID)可以把BSR_SDModel 數(shù)組中的數(shù)據(jù)導(dǎo)入為某條語(yǔ)音命令的特征模型。unsigned int BSR_SDModel[];配合BSR_ExportSDWord(int CommandID)與BSR_ImportSDWord(int CommandID)函數(shù)使用,此數(shù)組的作用相當(dāng)于一個(gè)暫時(shí)的存儲(chǔ)區(qū)。 下載程序并調(diào)試檢測(cè)驗(yàn)證應(yīng)用方案的步驟步驟一:?jiǎn)?dòng) u’nSP IDE。打開(kāi)機(jī)器人應(yīng)用實(shí)例程序,編譯、鏈接確認(rèn)沒(méi)有錯(cuò)誤。 所示: 編譯、鏈接圖步驟二:下載程序代碼到機(jī)器人的61板上。步驟三:打開(kāi)機(jī)器人的電源,進(jìn)行語(yǔ)音訓(xùn)練,訓(xùn)練過(guò)程按照下面進(jìn)行:按順序訓(xùn)練以下15條指令:“名稱”,“開(kāi)始”,“準(zhǔn)備”,“跳舞”,“再來(lái)一曲”,“開(kāi)始”,“向前走”,“倒退”,“右轉(zhuǎn)”,“左轉(zhuǎn)”,“準(zhǔn)備”,“向左瞄準(zhǔn)”,“向右瞄準(zhǔn)”,“發(fā)射”,“連續(xù)發(fā)射”。每條指令要訓(xùn)練兩遍。當(dāng)一條指令被正確識(shí)別時(shí)會(huì)提示進(jìn)入下一條;如沒(méi)有被識(shí)別會(huì)要求重復(fù)該指令,直到正確識(shí)別為止。步驟三如果訓(xùn)練成功則進(jìn)入語(yǔ)音識(shí)別狀態(tài),如果訓(xùn)練沒(méi)有成功則重復(fù)訓(xùn)練。由于SPCE061A的FLASH存儲(chǔ)器只有32K,所以15條指令需要分組存放。在這里分成3組,每組5條指令。在不同組指令中交換需要根據(jù)出發(fā)名稱,所以在識(shí)別狀態(tài),要執(zhí)行動(dòng)作首先需要出發(fā)名稱,就是訓(xùn)練的第一條命令,然后可以識(shí)別第一組的其余四條命令。在觸發(fā)第一條指令,然后再觸發(fā)第二條指令,就可以識(shí)別第三條指令,:名稱再來(lái)一曲開(kāi)始準(zhǔn)備跳舞左轉(zhuǎn)右轉(zhuǎn)向前走倒退向左瞄準(zhǔn)發(fā)射連續(xù)發(fā)射向右瞄準(zhǔn) 機(jī)器人操作示意圖第四章 語(yǔ)音識(shí)別技術(shù) 語(yǔ)音識(shí)別基本原理 語(yǔ)音識(shí)別基本原理:預(yù)處理,語(yǔ)音信號(hào)數(shù)字化。特征提取,抽取反應(yīng)語(yǔ)音本質(zhì)的特征參數(shù),形成特征矢量序列。語(yǔ)音模型庫(kù),從一個(gè)或多個(gè)講話者多次重復(fù)講話中提取的語(yǔ)音參數(shù)模板。模式匹配,把輸入語(yǔ)音的特征參數(shù)與語(yǔ)音模型庫(kù)進(jìn)行比較分析,得到識(shí)別結(jié)果。語(yǔ)音識(shí)別基本原理圖如下():預(yù)處理特征提取模式匹配后處理主意模型庫(kù)輸入語(yǔ)音識(shí)別訓(xùn)練初步識(shí)別結(jié)果識(shí)別結(jié)果 語(yǔ)音識(shí)別基本原理 語(yǔ)音合成技術(shù)將以其他方式表示或存儲(chǔ)的信息轉(zhuǎn)換成語(yǔ)音。最常見(jiàn)的語(yǔ)音合成技術(shù)是將文本轉(zhuǎn)換為語(yǔ)音(TTS)。:文本處理韻律處理語(yǔ)音合成詞典及語(yǔ)言規(guī)范語(yǔ)音數(shù)據(jù)庫(kù)合成語(yǔ)音輸出文本輸入 從文本到語(yǔ)音轉(zhuǎn)換過(guò)程示結(jié)束語(yǔ)本文通過(guò)對(duì)語(yǔ)音識(shí)別技術(shù)的研究,結(jié)合凌陽(yáng)單片機(jī)對(duì)語(yǔ)音資源的特有的支持,設(shè)計(jì)實(shí)現(xiàn)了處理器對(duì)人的語(yǔ)音識(shí)別功能,并將單片機(jī)作為遙控智能機(jī)器人的微處理器,使遙控控制變身為人的語(yǔ)音識(shí)別控制,該機(jī)器人通過(guò)實(shí)現(xiàn)的訓(xùn)練,就能夠識(shí)別指定的語(yǔ)音命令,如:前進(jìn)、后退、左轉(zhuǎn)、右轉(zhuǎn)、唱歌、跳舞、左右瞄準(zhǔn)等近15 條語(yǔ)音命令,然后由微處理器解析收到的相應(yīng)指令,驅(qū)動(dòng)相應(yīng)的電機(jī),使機(jī)器人執(zhí)行相應(yīng)的動(dòng)作,具備較好的交互性和娛樂(lè)性。系統(tǒng)只用了單顆SPCE061A芯片來(lái)完成語(yǔ)音處理和控制功能,與專用的語(yǔ)音處理芯片相比,具有結(jié)構(gòu)簡(jiǎn)單、成本低、易實(shí)現(xiàn)的特點(diǎn),并且凌陽(yáng)科技公司提供了豐富的C函數(shù)庫(kù)和語(yǔ)音處理函數(shù)庫(kù),供調(diào)用,縮短了開(kāi)發(fā)周期。由于時(shí)間倉(cāng)促,系統(tǒng)的設(shè)計(jì)沒(méi)能很好的拓展創(chuàng)新,機(jī)器人的舞步舞曲及其它動(dòng)作還需進(jìn)一步的改進(jìn)!本品稍作改動(dòng),就可以用來(lái)控制空調(diào)機(jī)、錄像機(jī)等電器;利用SPCE061A的語(yǔ)音處理優(yōu)勢(shì)可組成語(yǔ)音應(yīng)答系統(tǒng)、語(yǔ)音合成系統(tǒng)、互動(dòng)式玩具等,具有廣闊的市場(chǎng)前景。參考文獻(xiàn)[1][M].北京:北京航空航天大學(xué)出版社,2003[2]李玉賢.基于SPCE061A單片機(jī)的語(yǔ)音識(shí)別系統(tǒng)的研究[M],2004[3]李麟.家用機(jī)器人語(yǔ)音識(shí)別及人機(jī)交互系統(tǒng)的研究[M],2007 [4][M],2007[5]王雪松,田西蘭,[N].儀器儀學(xué)報(bào),2006,6[6][Z].北京:北京航空航天大學(xué)出版社,2005[7][Z].北京:北京航空航天大學(xué)出版社,2005[8][Z].北京:北京航空航天大學(xué)出版社,2005[9]趙定遠(yuǎn),[M].北京:中國(guó)水利出版社,2006[10]李曉靜,羅永革,[J].湖北汽車(chē)工業(yè)學(xué)院學(xué)報(bào),2007[11]王慧,王超陳,[M].世界科技研究與發(fā)展,2009[12][J].電子世界,1997[13][J].電子世界,2004[14]黃淞,蔣雪峰,[J].應(yīng)用科技,2002[15]Zili Zhou Chris of ConfigurationDependent Flexible Joints for a Parallel Robot. Advances in Mechanical Engineering,2009 [16]羅志增,[J]杭州電子T業(yè)學(xué)院學(xué)報(bào),2004[17]ZbanciocM, neural networks and LPCC to improve speech recognition singals[J].Proceedings of the International symposium on ciucuits and Systems,2003[18]SU JAY Phadke,RH ISH I KESH Limaye,SIDDHARTH Verma, On Design and Implementation of an Embedded Autom atic Speech Recognition System[C]//Proceedings of the 17th International Conference on VLSI Design,Washington,DC,USA:IEEE Computer Society,2004: 127132.[19]BANBROOK M,MCLAUGHLINS ,MANN I Speech Characterization and Synthesis by Nonlinear Methods[J].IEEE Speech and Audio Proc,1999,7(1): 117.附表A 程序流程圖開(kāi)始初始化IOB口語(yǔ)音訓(xùn)練與存儲(chǔ)置相關(guān)標(biāo)志位語(yǔ)音識(shí)別初始化擦除指定的FLASH判斷是否為第一次下載 是否為觸發(fā)狀態(tài)是否為觸發(fā)名稱判斷是第幾組命令設(shè)置觸發(fā)判斷是第幾條命令判斷是第幾條命令判斷是第幾條命令播放應(yīng)答導(dǎo)出第二組命令導(dǎo)出第三組命令跳舞再來(lái)一曲播放應(yīng)答向前走向后走左轉(zhuǎn)右轉(zhuǎn)播放應(yīng)答向左瞄準(zhǔn)向右瞄準(zhǔn)發(fā)射連續(xù)發(fā)射訓(xùn)練是否超時(shí)Key3鍵是否按下消除觸發(fā)標(biāo)志擦除FLASH標(biāo)志NYNYYNNNYY第一組命令第二組命令第三組命令附錄B Improved speech recognition methodfor intelligent robot2.Overview of speech recognitionSpeech recognition has received more and more attention recently due to the important theoretical meaning and practical value [5].Up to now,most speech recognition is based on conventional linear system theory,such as Hidden Markov Model (HMM) and Dynamic Time Warping(DTW)With the deep study of speech recognition,it is found that speech signal is a plex nonlinear process.If the study of speech recognition wants to break through,nonlinearsystem theory method must be introduced to it.Recently,with the developmentof nonlineasystem theories such as artificial neural networks(ANN),chaos and fractal,it is possible to apply these theories to speech recognition.Therefore,the study of this paper is based on ANN and chaos and fractal theories are introduced to process speech recognition.Speech recognition is divided into two ways that are speaker dependent and speaker independent.Speaker dependent refers to the pronunciation model trained by a single person,the identification rate of the training person?sorders is high,while others’orders is in low identification rate or can’t be recognized.Speaker independent refers to the pronunciation model trained by persons of different age,sex and region,it can identify a group of persons’orders.Generally,speaker independent system ismorewidely used,since