freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

開關磁阻電機的優(yōu)化控制研究畢業(yè)論文(編輯修改稿)

2025-07-25 18:12 本頁面
 

【文章內容簡介】 以及變化的變化率ECC為輸入量。從理論上講,模糊控制器的維數(shù)越高,控制越精確。但是這類模糊控制器的結構和控制規(guī)則較為復雜,推理運算時間長,所以一般很少采用。(a)一維模糊控制器 (b)二維模糊控制器 (c)三維模糊控制器圖34 模糊控制器2.確定模糊參數(shù)語言變量是以自然或人工語言的詞、詞組或句子作為值的變量。在設計模糊控制器時,人們一般選擇偏差E和其變化率EC作為語言變量,并且對每一語言變量都必須定義它的各個語言值,即它的各個隸屬度函數(shù)。一般來說,一個語言變量可以任意地劃分成幾個語言值,但并不是將它分得越多越細,控制的效果就會越好。原則上設計一個模糊控制器時,應先從簡單的開始,如三檔,若不滿足要求時,再根據(jù)情況考慮增加。所謂論域變換是指從語言變量的實際值到其等級值的變換。設有一物理量,其連續(xù)范圍是X=[xL,XH],XL表示低限值,XH表示高限值,把此論域轉換成等級值N=[n,n+1,…,1,0,1,…n1,n],因此量化因子可表示為 k= (31)對于X論域的清晰量a,對應離散論域的元素b為 b=k(a ) (32)通過這樣的量化之后,X=[xL,xH]就轉化成離散論域[n,n]。3.輸入量的模糊化一般來說,對于實際問題輸入的模糊化是建立模糊推理系統(tǒng)的第一步,也就是選擇系統(tǒng)的輸入變量并根據(jù)其相應的隸屬度函數(shù)來確定這些輸入分別歸屬于恰當?shù)哪:?。將精確量轉化為模糊量的過程稱為模糊化,或稱模糊量化。其具體過程如下:(1)首先對輸入量進行處理變成模糊控制要求的輸入量,即獲得偏差e和其變化率ec。 (2)對輸入量進行尺度變換,使其轉換到各自的論域。(3)對進行尺度變換的模糊量進行模糊處理,用模糊集合表示原先精確的輸入量。4.生成模糊控制規(guī)則模糊控制規(guī)則是模糊系統(tǒng)的核心部分,系統(tǒng)其它部分的功能在于解釋和利用這些模糊規(guī)則來解決具體問題。通常模糊規(guī)則具有如下的形式:IF(條件滿足)THEN(得出結論)其中的條件和結論都是模糊量,它們是模糊規(guī)則的前件和后件。實質上,模糊規(guī)則庫正是由具有上述形式的若干模糊“IF.THEN”規(guī)則的總和組成,從而實現(xiàn)了對被控對象的控制作用。5.輸出量的清晰化在模糊控制系統(tǒng)中,必須將經(jīng)模糊規(guī)則推理得到的輸出變量模糊度轉換為精確值,進而去控制被控對象[7]。 本章小結本章講述了模糊控制器的組成及原理,應用背景及模糊控制器的設計方法。第4章 基于MATLAB/simulink環(huán)境的SR調速系統(tǒng)的仿真第4章 基于MATLAB/simulink環(huán)境的SR電機調速系統(tǒng)的仿真 仿真軟件MATLAB/Simulink簡介MATLAB是Matrix Laboratory(矩陣實驗室)的簡稱,它是MathWorks公司于1984年推出的專為計算機解決數(shù)學問題而誕生的一種軟件。經(jīng)過20多年的發(fā)展,目前已成為科學計算和系統(tǒng)仿真首選的軟件工具。本文選用了最新的MATLAB R2007a版本。Simulink環(huán)境是MathWorks公司于1990年前后才推出的產(chǎn)品,是用于MATLAB下建立系統(tǒng)框圖和仿真的環(huán)境。Simulink除了用于微分方程的求解外,同時提供了各種可用于控制系統(tǒng)仿真的模塊,支持一般的控制系統(tǒng)仿真,此外,還提供了各種工程應用中可能使用的模塊,如電機系統(tǒng)、機構系統(tǒng)、通信系統(tǒng)等的模塊集,可以直接進行建模與仿真研究。Simulink 的功能十 分強大,可以借用其本身或模塊集對任意復雜的系統(tǒng)進行仿真。Simulink使得MATLAB的功能得到了進一步的擴展。Simulink由模塊庫、模型構造、指令分析和演示程序組成,是一個模塊化、模型化的系統(tǒng)動態(tài)仿真環(huán)境。用戶應用Simulink對系統(tǒng)進行建模、仿真和分析時如同堆積木一樣簡單方便,只需要在模型窗中單擊或是拖動鼠標即可。Simulink不能脫離MATLAB而獨立運行,但是它借助MATLAB在科學計算上得天獨厚的優(yōu)勢以及可視化的仿真模型窗口,彌補了傳統(tǒng)軟件工具的不足。同時,Simulink也是眾多仿真軟件中功能最強大、最優(yōu)秀的一種軟件工具。它使得動態(tài)系統(tǒng)仿真的實現(xiàn)相當方便,對系統(tǒng)的非線性因素和隨機因素的研究也十分便捷、直觀。通過Simulink還可以對電氣、機械、通信等的連續(xù)、離散或是混合系統(tǒng)進行深入的系統(tǒng)建模、仿真與分析研究。正是因為MATLAB/Simulink具有眾多其它同類軟件不具備的優(yōu)點,所以才受到國內外學者和工程師的深切關注,得以不斷地擴充和迅速發(fā)展,成為當今世界在科學計算和系統(tǒng)仿真領域里首選的軟件工具[8]。 系統(tǒng)仿真研究 被控對象通過簡化,開關磁阻電動機調速系統(tǒng)可以用帶有純滯后的二階環(huán)節(jié)表示。因此,本節(jié)選用帶有純滯后變參數(shù)的二階環(huán)節(jié)作為被控對象,進行模糊控制的仿真研究。設定控制對象的表達式為: [11] (41)在本系統(tǒng)中大慣性環(huán)節(jié)取為4。 PI仿真模型及結果圖 41 系統(tǒng)PI仿真模型圖從仿真結果可知,PI控制系統(tǒng)的仿真結果存在超調,且調節(jié)時間很長。因為此系統(tǒng)的仿真模型存在嚴重的非線性,難以建立精確的數(shù)學模型。因此考慮使用不需建立精確數(shù)學模型的模糊控制方法。 常規(guī)模糊控制器仿真模型及結果 論域及隸屬度定義偏差、偏差變化量和控制量所取的模糊集相同,均為:﹛NB,NM,NS,ZO,PS,PM,PB﹜,其中NB=負大,NM=負中,NS=負小,ZO=零,PS=正小,PM=正中,PB=正大。論域也相同均為{X}={Y}={Z}={6,5,…5,6}。4000800120020304050100 圖42 系統(tǒng)PI仿真結果論域X、Y、Z中的7個模糊子集的隸屬度函數(shù)相同,如圖43所示。圖43 速度誤差,誤差變化,控制量的隸屬度函數(shù)在本文中,速度誤差范圍:10r/min—10r/min,速度誤差變化范圍:15r/min—15r/min,因此量化因子為: Ke= (42) Kec= (43) 模糊算法設計模糊控制規(guī)則表41 模糊控制規(guī)則控制量U 偏差e*PB PM PS ZO NS NM NB偏差變化率△e*PBPBPBPBPMPSPSZOPMPBPBPMPMPSZOZOPSPBPMPSPSZONSNMZOPMPSPSZONSNMNBNSPMPSZONSNMNMNBNMZOZONSNMNMNBNBNBZONSNSNMNBNBNB模糊推理這是指采用某種推理方法,由采樣時刻的輸入和模糊控制規(guī)則導出模糊控制器的控制量輸出。模糊推理算法和很多因素有關,如模糊蘊含規(guī)則、推理合成規(guī)則等。常用的推理算法有:Mamdani模糊推理算法、Larserl模糊推理算法、TakagiSugeno模糊推理算法、Tsukamoto模糊推理算法、簡單模糊推理算法等。本文中使用Mamdani模糊推理算法。 模糊量的清晰化通過模糊推理得到的是模糊量,而對于實際的控制量必須為清晰量,因此需要將模糊量轉換為清晰量,通常有以下幾種方法:最大隸屬度判決法、取中位數(shù)判決法、加權平均算法等。為了獲得準確的控制量,就要求模糊方法能夠很好的表達輸出隸屬度函數(shù)的計算結果。加權平均算法也叫重心算法,是取隸屬度曲線與橫坐標圍成面積的重心作為模糊推理的最終輸出值。因此本文采用重心算法計算控量。 模糊控制仿真模型 一個使用常規(guī)模糊控制器控制的系統(tǒng)的仿真模型見圖44。圖 44 系統(tǒng)模糊控制仿真模型因為模糊控制器的輸入是e和,輸出是u,所以模糊控制器的功能可以看作是一個非線性函數(shù):u=f(e,)這種模糊控制器的輸入輸出信號與PD控制器相同,控制特性也同PD控制器類似,故稱為PD型模糊控制器。因為僅使用PD型的控制器無法消除系統(tǒng)的靜差,所以使用一個積分環(huán)節(jié)和模糊控制器并聯(lián),這樣就形成了一個完整的控制器。其中自定義的模糊控制器的設計過程如下:1)打開模糊邏輯控制器設計窗口界面[9] 本實驗中設計的是二維模糊控制器,如圖45所示。2)設計輸入、輸出量的隸屬度函數(shù)在該窗口中,可以更改輸入,輸出隸屬度函數(shù)的名稱、范圍,還可以方便的查看、設定、修改隸屬度函數(shù)的值,如圖46所示。3)設計模糊控制規(guī)則在該窗口中,可以根據(jù)實際經(jīng)驗,逐一的設定模糊控制規(guī)則,如圖47所示: 模糊控制仿真結果 圖 45 模糊控制控制器編輯窗口圖 46 隸屬度函數(shù)編輯窗口通過圖48可知,模糊控制器比起常規(guī)控制器有許多優(yōu)點,如無須建立精確的數(shù)學模型,具有較強的魯棒性,由離線計算得到控制查詢表而提高控制圖 47 模糊控制規(guī)則編輯窗口系統(tǒng)的實時性,以及控制機理符合人們對過程控制作用的直觀描述和思維邏輯而便于理解。但常規(guī)的模糊控制器亦有許多不足之處,如系統(tǒng)的超調大、調節(jié)時間長以至于有時會產(chǎn)生震蕩、穩(wěn)態(tài)誤差較大等。產(chǎn)生這些缺點的主要原因是常規(guī)的模糊控制器在結構上過于簡單,且在設計過程中也有許多主觀因素,而且一旦模糊規(guī)則確定就不再變化等。所以需要尋找一些新的方法來改善常規(guī)模糊控制器的性能。圖 48 模糊控制仿真結果 常規(guī)模糊控制的改進策略 基于比例因子自調整的模糊自適應控制 由圖48可以看出,在常規(guī)控制器的作用下,系統(tǒng)性能仍有需要進一步改進的地方。如統(tǒng)上升時間有待進一步縮短,系統(tǒng)的穩(wěn)定性有待進一步提高等等。于是,我們考慮在原來的常規(guī)模糊控制器的基礎上進行改進,以進一步改善系統(tǒng)性能。.考慮到量化因子Ke和Kec的作用主要是用于輸入信號和同模糊控制器論域的匹配,所以在改進的過程中Ke和Kec不做變化。因為模糊控制器的輸出是et, et同模糊控制器論域的匹配,所以在改進過程中Ke,Kec不做變化,因為模糊控制器的輸出是域的匹配,所以在改進的過程中Ke,Kec不變。因為模糊控制器的輸出是經(jīng)過Ku才加到模型上的,所以直接來調節(jié)Ku更有意義。我們對原有的模糊控制器的改進目標是:①加快系統(tǒng)響應速度。②提高系統(tǒng)的穩(wěn)定性。因此我們根據(jù)改進目標對Ku給出如下控制策略:①在系統(tǒng)的相對誤差較大時,增大比例因子Ku。②在系統(tǒng)的相對誤差較小時,減小比例因子Ku。我們采用一個比例系數(shù)復合一個調節(jié)函數(shù)的方法來實現(xiàn)上述的控制策略。如圖49所示:圖 49 自適應比例因子環(huán)節(jié)構造示意圖 比例因子自適應環(huán)節(jié)構造:首先根據(jù)當前系統(tǒng)的誤差和系統(tǒng)的給定計算出誤差的相對值然后再根據(jù)誤差相對值和給定的調節(jié)函數(shù)求得當前狀況下的比例因子調節(jié)系數(shù)α,用計算公式Ku’=K. α得到新的比例因子Ku’;最后用Ku’來乘以模糊控制器的輸出量得到新的控制量U。調節(jié)曲線構造:調節(jié)函數(shù)的選取原則應該使Ku的變化體現(xiàn)前面所給出的控制策略,即誤差大時比例因子增大,誤差小時比例因子減小。于是,構造調節(jié)函數(shù)如圖410所示[6]:圖 410 調節(jié)曲線圖410即為調節(jié)曲線。整個曲線在1左右變化,同時調節(jié)系數(shù)α隨著誤差相對值的絕對值的增大而增大,這樣在相對誤差大的時候就將前面的系數(shù)K放大,當誤差小的時候就將系數(shù)K縮小,滿足了優(yōu)化策略的原則。改進后的控制系統(tǒng)結構圖如圖411所示:圖 411 比例因子自適應模糊控制系統(tǒng)圖 412 比例因子自適應模糊控制系統(tǒng)仿真結果對照圖44和圖411,唯一不同的是將原來固定參數(shù)的Ku環(huán)節(jié)變成了自適應的Ku’環(huán)節(jié)。同時由圖412可以看出,圖44通過以上控制策略改進后的模糊控制器的控制性能較改進前有了較大的改善,上升速度加快,調節(jié)時間縮短,超調小。 大慣性性環(huán)節(jié)同比例因子的關系在系統(tǒng)的模型變化不大時,采用上面的比例因子自調整的方法進行模糊控制能取得令人滿意的結果。但是當系統(tǒng)模型變化時,系統(tǒng)仍然會顯示出一定的不穩(wěn)定性。在這里,針對系統(tǒng)的大慣性環(huán)節(jié)的變化,提出了比例因子的調整方案,仿真模型圖見413。圖413 比例自適應仿真模型在該控制系統(tǒng)中,將圖411中的比例因子自適應環(huán)節(jié)分解成了兩個部分,即比例部分和調節(jié)部分。在給定為1000的時候,對原系統(tǒng)進行仿真。在此最優(yōu)比例系數(shù)的基礎上改變被控對象模型,81216200440001200800獲得在大慣性環(huán)節(jié)不同的情況下系統(tǒng)的控制效果如下。a)Ts=3b)Ts=48121620044008000120081216200440080001200c)Ts=8圖 414 不同大慣性環(huán)節(jié)對應的系統(tǒng)性能可以看到,隨著慣性的變化,針對Ts=4所設計的控制參數(shù)無法使系統(tǒng)的控制性能保持最優(yōu)。那究竟慣性環(huán)節(jié)的變化和控制參數(shù)之間有著怎樣的關系呢?針對不同的慣性環(huán)節(jié),做了相應的仿真,
點擊復制文檔內容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1