freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

語音識別技術(shù)人工智能方面的論文(編輯修改稿)

2024-07-21 18:15 本頁面
 

【文章內(nèi)容簡介】 其過程是:將語音信號波形的k個樣點的每一幀,或有k個參數(shù)的每一參數(shù)幀,構(gòu)成k維空間中的一個矢量,然后對矢量進(jìn)行量化。量化時,將k維無限空間劃分為M個區(qū)域邊界,然后將輸入矢量與這些邊界進(jìn)行比較,并被量化為“距離”最小的區(qū)域邊界的中心矢量值。矢量量化器的設(shè)計就是從大量信號樣本中訓(xùn)練出好的碼書,從實際效果出發(fā)尋找到好的失真測度定義公式,設(shè)計出最佳的矢量量化系統(tǒng),用最少的搜索和計算失真的運算量,實現(xiàn)最大可能的平均信噪比。   核心思想可以這樣理解:如果一個碼書是為某一特定的信源而優(yōu)化設(shè)計的,那么由這一信息源產(chǎn)生的信號與該碼書的平均量化失真就應(yīng)小于其他信息的信號與該碼書的平均量化失真,也就是說編碼器本身存在區(qū)分能力。   在實際的應(yīng)用過程中,人們還研究了多種降低復(fù)雜度的方法,這些方法大致可以分為兩類:無記憶的矢量量化和有記憶的矢量量化。無記憶的矢量量化包括樹形搜索的矢量量化和多級矢量量化。 (3)神經(jīng)網(wǎng)絡(luò)的方法  利用人工神經(jīng)網(wǎng)絡(luò)的方法是80年代末期提出的一種新的語音識別方法。人工神經(jīng)網(wǎng)絡(luò)(ANN)本質(zhì)上是一個自適應(yīng)非線性動力學(xué)系統(tǒng),模擬了人類神經(jīng)活動的原理,具有自適應(yīng)性、并行性、魯棒性、容錯性和學(xué)習(xí)特性,其強的分類能力和輸入輸出映射能力在語音識別中都很有吸引力。但由于存在訓(xùn)練、識別時間太長的缺點,目前仍處于實驗探索階段。   由于ANN不能很好的描述語音信號的時間動態(tài)特性,所以常把ANN與傳統(tǒng)識別方法結(jié)合,分別利用各自優(yōu)點來進(jìn)行語音識別。 六、語音識別系統(tǒng)的結(jié)構(gòu)  一個完整的基于統(tǒng)計的語音識別系統(tǒng)可大致分為三部分:   (1)語音信號預(yù)處理與特征提取。   (2)聲學(xué)模型與模式匹配。   (3)語言模型與語言處理、 (1)語音信號預(yù)處理與特征提取  選擇識別單元是語音識別研究的第一步。語音識別單元有單詞(句)、音節(jié)和音素三種,具體選擇哪一種,由具體的研究任務(wù)決定。   單詞(句)單元廣泛應(yīng)用于中小詞匯語音識別系統(tǒng),但不適合大詞匯系統(tǒng),原因在于模型庫太龐大,訓(xùn)練模型任務(wù)繁重,模型匹配算法復(fù)雜,難以滿足實時性要求。   音節(jié)單元多見于漢語語音識別,主要因為漢語是單音節(jié)結(jié)構(gòu)的語言,而英語是多音節(jié),并且漢語雖然有大約1300個音節(jié),但若不考慮聲調(diào),約有408個無調(diào)音節(jié),數(shù)量相對較少。因此,對于中、大詞匯量漢語語音識別系統(tǒng)來說,以音節(jié)為識別單元基本是可行的。   音素單元以前多見于英語語音識別的研究中,但目前中、大詞匯量漢語語音識別系統(tǒng)也在越來越多地采用。原因在于漢語音節(jié)僅由聲母(包括零聲母有22個)和韻母(共有28個)構(gòu)成,且聲韻母聲學(xué)特性相差很大。實際應(yīng)用中常把聲母依后續(xù)韻母的不同而構(gòu)成細(xì)化聲母,這樣雖然增加了模型數(shù)目,但提高了易混淆音節(jié)的區(qū)分能力。由于協(xié)同發(fā)音的影響,音素單元不穩(wěn)定,所以如何獲得穩(wěn)定的音素單元,還有待研究。   語音識別一個根本的問題是合理的選用特征。特征參數(shù)提取的目的是對語音信號進(jìn)行分析處理,去掉與語音識別無關(guān)的冗余信息,獲得影響語音識別的重要信息,同時對語音信號進(jìn)行壓縮。在實際應(yīng)用中,語音信號的壓縮率介于10100之間。語音信號包含了大量各種不同的信息,提取哪些信息,用哪種方式提取,需要綜合考慮各方面的因素,如成本,性能,響應(yīng)時間,計算量等。非特定人語音識別系統(tǒng)一般側(cè)重提取反映語義的特征參數(shù),盡量去除說話人的個人信息;而特定人語音識別系統(tǒng)則希望在提取反映語義的特征參數(shù)的同時,盡量也包含說話人的個人信息。   線性預(yù)測(LP)分析技術(shù)是目前應(yīng)用廣泛的特征參數(shù)提取技術(shù),許多成功的應(yīng)用系統(tǒng)都采用基于LP技術(shù)提取的倒譜參數(shù)。但線性預(yù)測模型是純數(shù)學(xué)模型,沒有考慮人類聽覺系統(tǒng)對語音的處理特點。   Mel參數(shù)和基于感知線性預(yù)測(PLP)分析提取的感知線性預(yù)測倒譜,在一定程度上模擬了人耳對語音的處理特點,應(yīng)用了人耳聽覺感知方面的一些研究成果。實驗證明,采用這種技術(shù),語音識別系統(tǒng)的性能有一定提高。從目前使用的情況來看,梅爾刻度式倒頻譜參數(shù)已逐漸取代原本常用的線性預(yù)測編碼導(dǎo)出的倒頻譜參數(shù),原因是它考慮了人類發(fā)聲與接收聲音的特性,具有
點擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1