【文章內(nèi)容簡介】
面裂紋開始和增殖將被抑制。因此,如果避免了表面裂紋的產(chǎn)生,該材料將從試樣[6365]中心向外部以自然的方式變形??紤]到這種類型的材料[16,21,58]重要的吸收氫不能通過擴(kuò)散發(fā)生,材料變形和外部氫氣氛的主要相互作用下是氫原子的。在這個方案中,如果新合金通過交叉位移容易變形,在入口的氫原子將分布在不同的滑動系統(tǒng)和變形進(jìn)行局部化的風(fēng)險會減少。因此,如果在微觀尺度上變形的局限避免,韌性宏觀反應(yīng)就可以預(yù)期。具體地,圖6和7清楚地表明該合金相對于參考的316L具有較高的穩(wěn)定性。然而,除了足夠的奧氏體穩(wěn)定性等屬性,還需要其他屬性才能獲得HEE耐磨材料[40]。,在塑性應(yīng)變下發(fā)生均勻變形的可能性被認(rèn)為是必要的額外的屬性..毫無疑問。特別是,SFE的實(shí)驗(yàn)測定,變形機(jī)制的完整描述,和斷裂力學(xué)性質(zhì)主要解釋了該合金中的氫的行為。然而,這種材料在40MPa的純氫氣和在50C下的性能意味著它是氫能應(yīng)用的一個有希望的候選對象。5. 結(jié)論 一種有著對氫環(huán)境脆化(HEE)高阻抗力的新型的精益合金化的奧氏體鋼在實(shí)驗(yàn)室中可以通過實(shí)證方法手段開發(fā)。特別是,高碳、%材料的基礎(chǔ)。與兩個營利的AISI 型304L和316L鋼相比,合金對HEE的敏感性是借助于40MPa純氫氣環(huán)境和40℃的慢速率拉伸試驗(yàn)為評價標(biāo)準(zhǔn)的。在這些條件下,新型合金表現(xiàn)出與316L的參考材料等效的對HEE的高抗性。這是主要是,該新型合金的整體性能,可以在對應(yīng)變誘發(fā)馬氏體的形成非常高的穩(wěn)定性的基礎(chǔ)上理解。此外,在氫氣環(huán)境中材料的高延展性表明了在塑性應(yīng)變下發(fā)生均勻變形的一定能力。在氫氣氣氛中的新型合金的性能意味著它是氫能應(yīng)用的一個有希望的候選對象。最后,通過考慮鉬的不存在和與鋼316L相比超過4%鎳含量的減少量,合金附加費(fèi)預(yù)計(jì)將顯著降低,從而表現(xiàn)出一種構(gòu)件在氫環(huán)境中運(yùn)行的成本效益。鳴謝:作者非常感謝以合同號0327802D為根據(jù)the Bundesministerium fu168。r Wirtschaft und Technologie(BMWi)的財政支持。這些在氫環(huán)境的拉伸試驗(yàn)是在“焊接研究所”(TWI,劍橋,英國)中進(jìn)行的。參考文獻(xiàn):[1] Birnbaum HK. Hydrogen embrittlement. Encyclopedia ofMaterials: Science and Technology 2001:3887e9.[2] Eliezer D, Chakrapani DG, Altstetter CJ, Pugh EN. Influence of austenite stability on the hydrogen embrittlement andstresscorrosion cracking of stainlesssteel. MetallurgicalTransactions A e Physical Metallurgy and Materials Science1979。10(7):935e41.[3] Singh S, Altstetter C. Effects of hydrogen concentration on slow crackgrowth in stainlesssteels. Metallurgical Transactions A 1982。13(10):1799e808.[4] Perng TP, Altstetter CJ. Comparison of hydrogen gasembrittlement of austenitic and ferritic stainlesssteels. Metallurgical and Materials Transactions A e Physical Metallurgy and Materials Science 1987。18(1):123e34.[5] Han G, He J, Fukuyama S. Effect of straininduced martensite on hydrogen environment embrittlement of sensitized austenitic stainless steels at low temperatures. Acta Materialia 1998。46(13):4559e70.[6] Deimel P, Sattler E. Austenitic steels of different position in liquid and gaseous hydrogen. Corrosion Science 2008。50:1598e607.[7] Zhang L, Wen M, Imade M, Fukuyama S, Yokogawa K. Effect of nickel equivalent on hydrogen environment embrittlement of austenitic stainless steels at low temperatures. Fracture of Nano and Engineering Materials and Structures, Proceedings of the 16th European Conference of Fracture.[8] Louthan MR, Caskey GR. Hydrogen transport andembrittlement in structural metals. International Journal ofHydrogen Energy 1976。1(3):291e305.[9] Thompson AW. Structural materials use in a hydrogenenergy economy. International Journal of Hydrogen Energy 1977。2:299e307.[10] Ohta T, Abe I. Hydrogen energy research and development in Japan. International Journal of Hydrogen Energy1985。10(5):275e9.[11] Shivanyuk VN, Foct J, Gavriljuk VG. On a role of hydrogeninduced epsilonmartensite in embrittlement of stable austenitic steel. Scripta Materialia 2003。49(6):601e6.[12] Teus SM, Shyvanyuk VN, Gavriljuk VG. Hydrogeninduced gammaepsilon transformation and the role of epsilonmartensitein hydrogen embrittlement of austenitic steels. Materials Science and Engineering: A 2008。497(1e2):290e4.[13] Caskey GR. Hydrogen effects in stainless steel. In: Oriani RA, editor. Hydrogen degradation of ferrous alloys 1985. . Noyes, Park Ridge and .[14] Mine Y, Narazaki C, Murakami K, Matsuoka S, Murakami transport in solutiontreated and prestrained austenitic stainless steels and its role in hydrogenenhanced fatigue growth. International Journal of Hydrogen Energy 2009。34:1097e107.[15] Martin M,Weber S, Theisen W, Michler T, Naumann J. Effect of alloying elements on hydrogen environment embrittlement of AISI type 304 austenitic stainless steel. International Journal of Hydrogen Energy 2011。36(24):15888e98.[16] Perng TP, Altstetter CJ. Effects of deformation on hydrogen permeation in austenitic stainlesssteels. Acta Metallurgica 1986。34(9):1771e81.[17] Kanezaki T, Narazaki C, Mine Y, Matsuoka S, Murakami of hydrogen on fatigue crack growth behavior of austenitic stainless steels. International Journal of Hydrogen Energy 2008。33(10):2604e19.[18] Michler T, Berreth K, Naumann J, Sattler E. Analysis of martensitic transformation in 304 type stainless analysis of martensitic transformation in 304 type