freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

基于matlab的bp神經(jīng)網(wǎng)絡(luò)的數(shù)字圖像識別(編輯修改稿)

2025-07-20 22:47 本頁面
 

【文章內(nèi)容簡介】 (36) 23i,j144325i,j1678圖 35 鄰域及其鄰域模板 (5)其中,M 為鄰域中除中心象素點(diǎn)f(i,j) 之外包括的其它象素總數(shù),對于4鄰域M=4,8 鄰域M=8。然而,鄰域平均值的平滑處理會使得圖像灰度急劇變化的地方,尤其是物體邊緣區(qū)域和字符輪廓等部分產(chǎn)生模糊作用。為了克服這種平均化引起的圖像模糊現(xiàn)象,我們給中心點(diǎn)象素值與其鄰域平均值的差值設(shè)置一固定的閾值,只有大于該閾值的點(diǎn)才能替換為鄰域平均值,而差值不大于閾值時(shí),仍保留原來的值,從而減少由于平均化引起的圖像模糊。 圖36 平滑處理后的圖像圖像中車輛牌照是具有比較顯著特征的一塊圖像區(qū)域,這此特征表現(xiàn)在:近似水平的矩形區(qū)域;其中字符串都是按水平方向排列的;在整體圖像中的位置較為固定。正是由于牌照圖像的這些特點(diǎn),再經(jīng)過適當(dāng)?shù)膱D象變換,它在整幅中可以明顯地呈現(xiàn)出其邊緣。邊緣提取是較經(jīng)典的算法,此處邊緣的提取采用的是Roberts算子。 圖37未濾波直接提取出的邊緣,經(jīng)灰度校正后提取的邊緣以及經(jīng)平滑處理后提取的邊緣 對比以上幾幅圖片,圖8的邊緣已經(jīng)模糊掉了。圖7中包含的噪聲太多,圖9未經(jīng)濾波直接提取出的邊緣圖像最清晰,所包含的有用信息最多。分析這種情況產(chǎn)生的原因,歸納起來主要有以下方面: 原始圖像清晰度比較高,從而簡化了預(yù)處理 圖像的平滑處理會使圖像的邊緣信息受到損失,圖像變得模糊 圖像的銳化可以增強(qiáng)圖像中物體的邊緣輪廓,但同時(shí)也使一些噪聲得到了增強(qiáng)綜上所述,結(jié)合MATLAB實(shí)驗(yàn)過程,得出不是每一種圖像處理之初都適合濾波和邊界增強(qiáng)。本次汽車車牌的識別,為了保存更多的有用信息,經(jīng)過多次比較,選擇圖9作為后期處理的依據(jù)。 2 車牌的定位與分割 車牌定位對車牌識別系統(tǒng)來說至關(guān)重要,目前已經(jīng)提出了很多車牌定位的方法,這些方法都具有一個(gè)共同的出發(fā)點(diǎn),即通過牌照區(qū)域的特征來判斷牌照。根據(jù)不同的實(shí)現(xiàn)方法,大致可以把現(xiàn)有的定位方法分為直接法和間接法兩類。 1)直接法。直接分析圖像的特征,如基于線模板的二值化圖像中的角檢測算法,該算法利用車牌的邊框角點(diǎn),檢測車牌的四個(gè)角點(diǎn),并以此來定位車牌。基于直線邊緣識別的圖像區(qū)域定位算法,并且利用該算法定位車牌的邊框線,以此定位車牌。利用車牌的尺寸、字符間距、字符特征等紋理特征定位車牌。利用車牌部分垂直高頻豐富的特點(diǎn)先利用小波提取圖像的垂直高頻信息,然后利用數(shù)學(xué)形態(tài)學(xué)方法對小波分解后的細(xì)節(jié)圖像進(jìn)行一系列的形態(tài)運(yùn)算,進(jìn)一步消除無用的信息和噪聲,以定位車牌。 2)間接法。主要是指利用神經(jīng)網(wǎng)絡(luò)法或者遺傳算法定位車牌的方法。利用神經(jīng)網(wǎng)絡(luò)和遺傳算法等柔性方法進(jìn)行計(jì)算是當(dāng)前研究熱點(diǎn)之一。利用遺傳算法對圖像進(jìn)行優(yōu)化搜索,結(jié)合區(qū)域特征矢量構(gòu)造的適應(yīng)度函數(shù),最終尋找到車牌的牌照區(qū)域的最佳定位參量。目前較為常用的方法是先提取車輛圖像的邊緣,然后結(jié)合車輛牌照的幾何特征,分析二值化邊緣圖像像素在水平和垂直方向的投影,判斷出車輛牌照的位置。 對圖像進(jìn)行腐蝕去除雜質(zhì)通過計(jì)算尋找X和Y方向車牌的區(qū)域完成車牌定位對分割出的車牌做進(jìn)一步處理 圖38 牌照定位于分割流程圖(1)牌照區(qū)域的定位牌照圖像經(jīng)過了以上的處理后,牌照區(qū)域已經(jīng)十分明顯,而且其邊緣得到了勾勒和加強(qiáng)。此時(shí)可進(jìn)一步確定牌照在整幅圖像中的準(zhǔn)確位置。這里選用的是數(shù)學(xué)形態(tài)學(xué)的方法,其基本思想是用具有一定形態(tài)的機(jī)構(gòu)元素去量度和提取圖像中的對應(yīng)形狀以達(dá)到對圖像分析和識別的目的。數(shù)學(xué)形態(tài)學(xué)的應(yīng)用可以簡化圖像數(shù)據(jù),保持它們基本的形態(tài)特征,并除去不相干的結(jié)構(gòu)。在本程序中用到了膨脹和閉合這兩個(gè)基本運(yùn)算,最后還用了bwareaopen來去除對象中不相干的小對象。 圖 39 腐蝕后圖像,平滑圖像的輪廓以及從對象中移除小對象后圖像(2)牌照區(qū)域的分割對車牌的分割可以有很多種方法,本程序是利用車牌的彩色信息的彩色分割方法。根據(jù)車牌底色等有關(guān)的先驗(yàn)知識,采用彩色像素點(diǎn)統(tǒng)計(jì)的方法分割出合理的車牌區(qū)域,確定車牌底色藍(lán)色RGB對應(yīng)的各自灰度范圍,然后行方向統(tǒng)計(jì)在此顏色范圍內(nèi)的像素點(diǎn)數(shù)量,設(shè)定合理的閾值,確定車牌在行方向的合理區(qū)域。然后,在分割出的行區(qū)域內(nèi),統(tǒng)計(jì)列方向藍(lán)色像素點(diǎn)的數(shù)量,最終確定完整的車牌區(qū)域。圖 310 行方向區(qū)域和最終定位出來的車牌(3)車牌進(jìn)一步處理經(jīng)過上述方法分割出來的車牌圖像中存在目標(biāo)物體、背景還有噪聲,要想從圖像中直接提取出目標(biāo)物體,最常用的方法就是設(shè)定一個(gè)閾值T,用T將圖像的數(shù)據(jù)分成兩部分:大于T的像素群和小于T的像素群,即對圖像二值化。均值濾波是典型的線性濾波算法,它是指在圖像上對目標(biāo)像素給一個(gè)模板,該模板包括了其周圍的臨近像素。再用模板中的全體像素的平均值來代替原來像素值。 圖 311 裁剪出來的車牌的進(jìn)一步處理過程3 字符的分割與歸一化[m,n]=size(d),逐排檢查有沒有白色像素點(diǎn),設(shè)置1=jn1,若圖像兩邊s(j)=0,則切割,去除圖像兩邊多余的部分切割去圖像上下多余的部分根據(jù)圖像的大小,設(shè)置一閾值,檢測圖像的X軸,若寬度等于這一閾值則切割,分離出七個(gè)字符歸一化切割出來的字符圖像的大小為40*20,與模板中字符圖像的大小相匹配 圖 312 字符分割與歸一化流程圖(1)字符分割在汽車牌照自動(dòng)識別過程中,字符分割有承前啟后的作用。它在前期牌照定位的基礎(chǔ)上進(jìn)行字符的分割,然后再利用分割的結(jié)果進(jìn)行字符識別。字符識別的算法很多,因?yàn)檐嚺谱址g間隔較大,不會出現(xiàn)字符粘連情況,所以此處采用的方法為尋找連續(xù)有文字的塊,若長度大于某閾值,則認(rèn)為該塊有兩個(gè)字符組成,需要分割。 圖 313 分割出來的七個(gè)字符圖像(2)字符歸一化一般分割出來的字符要進(jìn)行進(jìn)一步的處理,以滿足下一步字符識別的需要。但是對于車牌的識別,并不需要太多的處理就已經(jīng)可以達(dá)到正確識別的目的。在此只進(jìn)行了歸一化處理,然后進(jìn)行后期處理。 圖 314 歸一化處理后的七個(gè)字符圖像4 字符的識別 目前,字符識別方法主要有基于模板匹配算法和基于人工神經(jīng)網(wǎng)絡(luò)算法。基于模板匹配算法首先把待識別字符二值化并將其尺寸大小縮放為字符數(shù)據(jù)庫中模板的大小,然后與所有的模板進(jìn)行匹配,最后選最佳匹配作為結(jié)果。由于這種匹配算法穩(wěn)定性較差、時(shí)間花費(fèi)也較大,因此,在此基礎(chǔ)上提出了基于關(guān)鍵點(diǎn)的匹配算法。此算法先對識別字符進(jìn)行關(guān)鍵點(diǎn)提
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1