【總結(jié)】第二單元方程(組)與不等式(組)第8課時不等式(組)的解法及不等式的應用考點聚焦考點一不等式的有關(guān)概念及性質(zhì)不等關(guān)系同一個數(shù)(或式子)不變同一個正數(shù)不變考點聚焦考點一不等式的有關(guān)概念及性質(zhì)負數(shù)改變溫馨提示,不等式的解是單獨的未知數(shù)的值,
2025-06-12 13:59
【總結(jié)】第二章方程與不等式第5講一元一次不等式★課前預習★A1.當實數(shù)a<0時,6+a6-a(填“<”或“>”).2.不等式2x-1>3的解集是.3.不等式5215???xx的解集在數(shù)軸上表示正確的是()
2025-06-20 06:36
【總結(jié)】第二章方程與不等式不等式與不等式組中考數(shù)學(廣東專用)考點一不等式和一元一次不等式(組)A組2022-2022年廣東中考題組五年中考1.(2022廣東,6,3分)不等式3x-1≥x+3的解集是?()≤4≥4≤2≥2答案D根據(jù)一元一次不等
2025-06-26 22:43
【總結(jié)】第8講不等式(組)及其應用考點1不等式(組)的性質(zhì)6年1考a±cb±c考點2一元一次不等式(組)的解法1.解一元一次不等式的一般步驟(1)去分母;(2)去括號;(3)移項;(4)合并①________;(5)將未知數(shù)的系數(shù)化為1.2.一元一次不等式組的解
2025-06-17 04:53
【總結(jié)】精品資源不等式與不等式組(時間:45分鐘滿分:100分)姓名歡迎下載一、選擇題(每小題5分,共30分)1.若m>n,則下列不等式中成立的是()A.m+a<n+bB.ma<nbC.ma2>na2D.a(chǎn)m<an2.不等式4(x2)>2(3x+5)的非負整數(shù)解的個
2025-06-29 17:09
【總結(jié)】第二章方程(組)與不等式(組)§不等式(組)中考數(shù)學(浙江專用)1.(2022杭州,6,3分)若x+50,則?()+100C.?-1125x考點一不等式和一元一次不等式(組)A組2022-2022年浙江中考題組五年中考
2025-06-20 04:56
【總結(jié)】
2025-06-12 04:14
【總結(jié)】第八講不等式與不等式組一、知識網(wǎng)絡(luò)結(jié)構(gòu)圖二、考點精析考點一:不等式基本性質(zhì)運用1.由x0D.a2,則a的取值范圍是( )A.a(chǎn)0B.aC.a&l
2025-04-16 12:51
【總結(jié)】不等式與不等式組復習課呂河初中袁文宏請選擇自己喜歡的方式(邊閱讀教科書邊思考或先閱讀教科書后思考)用5分鐘時間回憶本章內(nèi)容,嘗試解決下面問題:(1)本章都學習了哪些概念?哪些運算?你想對同伴做哪些友情提示?(2)你準備建構(gòu)怎樣的知識網(wǎng)絡(luò)圖描述本章知識點之間的聯(lián)系
2024-12-07 17:25
【總結(jié)】不等式與不等式組專題復習(一)不等式考點1:不等式的定義知識點::用符號“<”“>”“≤”“≥”表示大小關(guān)系的式子叫做不等式。(像a+2≠a-2這樣用“≠”號表示不等關(guān)系的式子也是不等式。):①x是正數(shù),則x>0;②x是負數(shù),則x<0;③x是非負數(shù),則x≥0;④x是非正數(shù),則x≤0;⑤x大于y,則x-y>0;⑥x小于y,則x-y<0;
【總結(jié)】第二章方程與不等式第6講分式方程01課后作業(yè)02能力提升目錄導航課后作業(yè)1.(2022哈爾濱)方程12x=2x+3的解為()A.x=-1B.x=0C.x=35D.x=1
2025-06-20 01:11
2025-06-12 03:57
【總結(jié)】第二章方程(組)與不等式(組)考點一解二元一次方程組例1(2022·福建A卷)解方程組:【分析】觀察方程組,可用代入消元法求解,也可直接用加減消元法求解.【自主解答】解法一:加減消元法:②-①,得3x=9,解得x=x=3代入①,得3+y=1,解得y=-2.所以
2025-06-18 12:22
【總結(jié)】不等式和不等式組錢旭東淮安市啟明外國語學校蘇科版義務(wù)教育課程標準實驗教科書九年級復習課回顧·知識一元一次不等式(組)的應用一元一次不等式(組)的解法一元一次不等式(組)解集的含義一元一次不等式(組)的概念不等式的性質(zhì)一元一次不等式和一元一次不等式組回顧·知識:含
2024-10-12 13:38
【總結(jié)】不等式與不等式組教材分析本章的主要內(nèi)容包括:一元一次不等式(組)及其相關(guān)概念,不等式的性質(zhì),一元一次不等式(組)的解法及其解集的幾何表示,利用一元一次不等式(組)分析與解決實際問題.其中,以不等式(組)為工具分析問題、解決問題是重點,也是教學中的主要難點;一元一次不等式(組)及其相關(guān)概念、不等式的性質(zhì)是基礎(chǔ)知識;掌握一元一次不等式(組)的解法及解集
2025-07-18 00:29