【文章內(nèi)容簡介】
的目標不準備在任何優(yōu)先方向, 多個有差別的橫剖面必須是相稱由三體系統(tǒng)的自轉(zhuǎn)在子彈頭的行動的最初的方向附近。 因而, 擱置一邊三個片段的內(nèi)部結(jié)構(gòu)在最終狀態(tài), 只四 喪失九可變物是必要完全地描述驅(qū)散過程。 所以, 電離過程的一個完全描述特性也許被獲得以一個四倍有差別的橫剖面:有許多可能的套四可變物使用。 為,事例, 我們能選擇了電子的方位角角度和其它二個微粒的當(dāng)中一個, 相對角度在行動之間飛機, 并且一個微粒能量。這樣選擇是任意的, 但完成在感覺, 其他套可變物可能與這一個有關(guān)。 獨立可變物一個相似的選擇是標準的為原子電離的描述由電子沖擊, 理論上和實驗性地[ 3,4 ] 。 非常一般四倍有差別的橫剖面的圖片不是可行的。 因而, 它通常是必要減少可變物的數(shù)量在橫剖面。 這可能由修理達到一兩他們在某些特殊價值或情況。 例如, 我們也許任意地制約自己描述coplanar (. =0) 或a collinear motion (. =0 and θ1=θ2), 以便使問題的依賴性降低到三或二獨立可變物, 各自地。 另一選擇將集成四倍有差別的橫剖面在一個或更多可變物。前廣泛被應(yīng)用學(xué)習(xí)電子碰撞, 當(dāng)后者是主要工具描繪離子原子和正子原子電離碰撞。 特別重要對唯一微粒分光學(xué)的用途, 那里動量的微粒的當(dāng)中一個被測量。 3. 單個微粒的動量分布 動量發(fā)行為散發(fā)的電子和正子禮物幾個結(jié)構(gòu)。 首先, 我們能觀察門限在高電子或正子速度因為有一個極限在任一個微??赡芪諒南到y(tǒng)的動能。 第二個結(jié)構(gòu)是土坎被設(shè)置沿圈子。 它對應(yīng)于正子的二進制碰撞與散發(fā)的電子, 用目標中堅力量充當(dāng)實際角色。 終于, 有尖頂和anticusp 在零速度在電子和正子動量分布, 各自地。 第一個對應(yīng)于電子的勵磁于目標的一個低能源連續(xù)流狀態(tài)。秒鐘是取盡由于正子的捕獲的不可能的事由目標中堅力量。 這些動量發(fā)行允許我們學(xué)習(xí)電離碰撞的主要特征。 但是, 我們必須記住, 分析只微粒的當(dāng)中一個在最后狀態(tài)的任一個實驗性技術(shù)可能只提供部份洞察入電離過程。 四倍有差別的橫剖面也許顯示由綜合化洗滌在這實驗的碰撞物產(chǎn)。4. 理論模型我們想要討論在這通信的主要問題是如果有一些重要碰撞物產(chǎn)在正子原子碰撞, 那不是可測的,總共, 單或雙有差別的電離橫剖面, 并且那因為未被發(fā)現(xiàn)。 為了了解這些結(jié)構(gòu)的起源, 我們對應(yīng)的橫剖面與那些比較被獲得在離子原子碰撞。 履行這個宗旨它是必要的有一種充分的量子機械治療能同時應(yīng)付電離碰撞由重和輕的子彈頭的沖擊是因此相等地可適用的 例如 對離子原子或正子原子碰撞。 一種理論與這特征將允許我們學(xué)習(xí)倍數(shù)任一個指定的特點的變動有差別的橫斷面當(dāng)許多聯(lián)系在片段之中變化。 特別是, 它會允許我們學(xué)習(xí)變異當(dāng)改變在二之間制約了運動學(xué)情況。 第二重要點將對待所有互作用在最終狀態(tài)在一個同等立足處。 如同我們解釋了, 在離子原子碰撞, internuclear 互作用不充當(dāng)實際在散發(fā)的電子的動量發(fā)行的角色和因此未被考慮在對應(yīng)的演算。 在這工作, 這假定被避免了。 橫剖面利益在這范圍內(nèi)是轉(zhuǎn)折矩陣可能供選擇地被寫在崗位或預(yù)先的形式那里擾動潛力被定義為出生類型初始狀態(tài)哪些包括子彈頭的自由行動和最初的一定的狀態(tài)Ui 目標, 并且擾動潛力vi 簡單地是正子電子和正子中堅力量互作用的總和。 轉(zhuǎn)折矩陣也許然后被分解入二個期限依靠是否正子首先與目標中堅力量或電子相處融洽。為了是一致的與動力學(xué)的我們充分的治療, 它是必要描述最終狀態(tài)Wf 通過考慮所有互作用在同樣立足處的wavefunction 。 因而, 我們采取一個被關(guān)聯(lián)的C3 波浪作那包括畸變Dj 為三活躍互作用。 在連續(xù)流波浪作用這個選擇的最后渠道擾動潛力是[ 5 ]在純凈的庫侖潛力情況下, 畸變被給關(guān)于這個模型由佳瑞波帝和馬瑞吉拉[ 6 ] 提議為離子原子碰撞, 并且由Brauner 和布里格斯六年后為正子原子和電子碰撞[ 7 ] 。 但是, 在所有這些箱子問題的動力學(xué)被簡化了, 依照被談?wù)撛谠缦炔糠? 根據(jù)大非對稱在介入的片段的大量之間。 另外, Garibotti 和Miraglia 忽略了互作用潛力的矩陣元素在接踵而來的子彈頭和目標離子之間, 并且做銳化的略計評估轉(zhuǎn)折矩陣元素。 這進一步略計被取消了在紙由Berakdar 等。 (1992), 雖然他們保留許多制約在他們的離子沖擊電離分析。 5. 電子捕獲對連續(xù)流尖頂 讓我們回顧一些結(jié)果在立體幾何。 我們選擇作為二個獨立參量散發(fā)的電子動量組分, 平行和垂線對正子子彈頭的行動的最初的方向。 子彈頭的能量是1 keV 。圖2, 我們觀察三個不同結(jié)構(gòu): 二個極小值和土坎。圖2 土坎的起源很好被了解。 它對應(yīng)于電子捕獲于連續(xù)流(ECC) 尖頂被發(fā)現(xiàn)在離子原子碰撞三十年前由Crooks 和Rudd [ 8 ] 。 他們測量了電子能量光譜在向前方向和確切地觀察了尖頂形狀峰頂在子彈頭的速度。 第一理論解釋[ 9 ] 表示, 它分流以與1 相似的方式k 。 這個尖頂結(jié)構(gòu)是很多實驗性和理論研究焦點。 因為ECC 尖頂是一個推測橫跨捕獲電離極限入高度激動的一定的狀態(tài), 這個同樣作用必須是存在在正子原子碰撞。 實際上, 這樣作用的觀察聯(lián)系了假定物體的形成, 當(dāng)被預(yù)言的二十年前由布朗勒和布里格斯, 依然是一個有爭議的問題。 這爭執(zhí)的原因是那, 與離子對比盒, 正子外出的速度與那不是相似沖擊, 但主要傳播在角度和巨大。 因而沒有特殊速度在哪里尋找尖頂。 并且這一定是如此。 如果我們評估雙重有差別的橫剖面, 我們看見, 尖頂清楚地是可看見的在離子原子碰撞, 但非常溫和和被傳播的肩膀在正子原子碰撞。 因而, 觀察這結(jié)構(gòu)它是必要增加橫剖面的維度。 例如由考慮四倍有差別的橫剖面的零的程度裁減在collinear 幾何。Kover 和Laricchia 測量了在1998 dr/dEedXkdXK 橫剖面在一個collinear 情況在零的程度, 為H2 的電離分子由100 keV 正子沖擊[ 10 ] 。 結(jié)構(gòu)依照為沖擊對重的離子被觀察那么尖銳不被定義由于占實驗性窗口在正子的卷積 并且電子偵查。 從目標反沖不充當(dāng)在這個實驗性情況的重大角色, 當(dāng)前一般理論給結(jié)果相似與那些由Berakdar [ 11 ] 獲得, 并且兩個跟隨嚴密實驗性價值。 這同樣實驗由Sarkadi 和工友執(zhí)行了在氬電離由75 keV 氫核沖擊。 他們第一次測量了四倍有差別的電離橫剖面在collinear 幾何為離子原子碰撞, 并且發(fā)現(xiàn)ECC 尖頂和在正子沖擊在大角度。 在這種情況下, 我們必須保留動力學(xué)的一個完全帳戶為了再生產(chǎn)實驗性結(jié)果[ 12 ] 。6. 托馬斯機制 現(xiàn)在讓我們走回到H2 的電離由1 keV 正子沖擊。 一個結(jié)構(gòu)在45 可能被觀察, 1993 年哪些象由于被預(yù)言了和被解釋了由Brauner 和布里格斯二個等效雙重碰撞機制干涉。 每個這些過程包括正子電子二進制碰撞, 被偏折跟隨被90 輕的微粒的當(dāng)中一個被重的中堅力量。 這個機制由托馬斯[ 13 ] 提議作為扼要負責(zé)任電子捕獲由快速的重的離子。 在這種情況下, 從電子和正子大量是相等的, 這兩個過程干涉在45 。 如果我們降低能量從1000 年eV 到100 eV, 這個結(jié)構(gòu)在45 消失, 與想法是一致的結(jié)果托馬斯機制是一個高能作用。 但有其它結(jié)構(gòu), 。我們在下個部分將考慮這個結(jié)構(gòu)。7. 備鞍點機制 一定更難辨認。 對我們的最佳的知識, 它以前未被預(yù)言在正子原子碰撞, 即使機制負責(zé)任它的起源幾乎已經(jīng)提議在離子原子碰撞二十年之內(nèi)以前。 想法是, 電子能從離子原子碰撞涌現(xiàn)由在在子彈頭和殘余的目標離子潛力的備鞍點。 1772 年這個機制清楚地與平衡點的當(dāng)中一個有關(guān)由拉格朗日發(fā)現(xiàn), 或?qū)C制由Wannier 提議為低能源電子放射。 在 離子原子碰撞案件, 查尋這個機制的理論和實驗性證據(jù)是陰暗由生動的爭論[ 1418 ] 。在正子原子碰撞情況下, 為電子被困住在正子和殘余離子潛力的馬鞍, 電子和正子必須首先執(zhí)行二進制碰撞以便最終獲得正確的速度那里ei 是目標的結(jié)合能在初始狀態(tài)。 能量和動量保護原則的應(yīng)用表示, 正子偏離在角度 終于, 為電子涌現(xiàn)在方向和正子一樣, 它必須遭受隨后碰撞以殘余中堅力量在a 托馬斯象過程。 在這第二碰撞, 電子由90 和殘余目標離子反沖偏轉(zhuǎn)在形成大約135 角度與電子和正子的方向。 這個機制被描述在圖4. 因而, 檢查備鞍點的提案是正確的, 我們看是否我們的演算顯示與備鞍點電子生產(chǎn)的這個描述是一致的結(jié)構(gòu)。 圖 3 圖 4 極小值被觀察在無效性QDCS 。 圖3 和圖4 精確地設(shè)置早先條件在任何能量和角度三個微粒符合的那些點。 我們做了其它測試在備鞍點機制的有效性和無效性。 圖5 表示, 結(jié)構(gòu)完全出現(xiàn)從tp 期限。 這個結(jié)果與提出的機制是一致的, 那里備鞍點結(jié)構(gòu)出現(xiàn)從第一正子電子碰撞之后, 正子和電子被中堅力量驅(qū)散。 圖 58. 結(jié)論 總結(jié)結(jié)果提出了在這通信, 我們由正子的沖擊調(diào)查了分子氫的電離。 被獲得的四倍有差別的橫斷面為電子和正子涌現(xiàn)在同樣方向顯示三個統(tǒng)治結(jié)構(gòu)。 你是知名的電子捕獲對連續(xù)流峰頂。 另外一個是托馬斯機制。 終于, 有被解釋對象由于所謂的備鞍點 電離機制的極小值。 雖然主要結(jié)論研究的非常充分但也有一些不足。橫剖面也許會被很多巨大的困難所阻礙, 但值得高興的是, 我們一直沒有錯過對問題許多不同的全方位的觀察, 唯一的遺憾就是對總橫剖面的研究。英文原文Theory of ionization processes in positron–atom collisionsAbstract We review past and present theoretical developments in the description of ionization processes in positron–atom collisions. Starting from an analysis that incorporates all the interactions in the final state on an equal footing and keeps an exact account of the fewbody kinematics, we perform a critical parison of different approximations, and how they affect the evaluation of the ionization cross section. Finally, we describe the appearance of fingerprints of capture to the continuum, saddlepoint and other kinematical mechanisms. Keywords: Ionization。 Collision dynamics。 Scattering。 Electron spectra。 Antimatter。 Positron impact。 Saddlepoint electrons。 Wannier。 CDW PACS classification codes: .+x。 1. Introduction The simple ionization collision of a hydrogenic atom by the impact of a structureless particle, the “threebody problem”, is one of the oldest unsolved problems in physics. The twobody problem was analyzed by Johannes Kepler in 1609 and solved by Isaac Newton in 1687. The threebody problem, on the other hand, is much more plicated and cannot be solved analytically, except in some particular cases. In 1765, for instance, Leonhard Euler discovered a “collinear” solution in which three masses start in a line and remain linedup. Some years later, Lagrange discovered the existence of five equilibrium points, known as the Lagrange points. Even the most recent quests for solutions of the threebody scattering problem use similar mathematical tools and follow similar paths than those travelled by astronomers and mathematicians in the past three centuries. For instance, in the centerofmass reference system, we describe the threebody problem by any of the three possible sets of t