【正文】
5662。 箱體箱體的作用是提供給刮板一個封閉的剝殼環(huán)境,并對相關(guān)結(jié)構(gòu)起到支承和定位作用。具體結(jié)構(gòu)設(shè)計見零件圖。具體結(jié)構(gòu)見裝配圖。刮板式花生去殼的附件包括裝料斗,軸承蓋,風量調(diào)節(jié)裝置。本次設(shè)計是對我的四年的大學生活做出的總結(jié),同時為將來工作進行了一次適應性訓練,從中鍛煉自己解分析問題、解決問題的能力,為今后自己的研究生生活打下一個良好的基礎(chǔ)。最后,謹向所有給我關(guān)心、理解、支持和幫助的人們表示最誠摯的謝意!附錄 英文翻譯資料中文翻譯正電原子在電離過程中碰撞的理論摘要 我們回顧過去和現(xiàn)在正子原子在電離過程中碰撞理論的發(fā)展。 碰撞動力學。 正電子沖擊。三體問題比二體問題更加復雜難懂, 除了一些特殊的現(xiàn)象,它不能被簡單的分析解決。例如, 在大量的中心參考系統(tǒng)下, 我們在1836 年描述三體問題由任何空間座標都可能的原因已經(jīng)由杰庫比介紹。 (2)對于電子和正子原子碰撞, 一個微粒(目標中堅力量) 比其它兩個原子要重的多。 問題的這些簡單化被介紹了在18 世紀。 這略計廣泛被應用在電子或正子原子電離碰撞。 因而, 擱置一邊三個片段的內(nèi)部結(jié)構(gòu)在最終狀態(tài), 只四 喪失九可變物是必要完全地描述驅(qū)散過程。 獨立可變物一個相似的選擇是標準的為原子電離的描述由電子沖擊, 理論上和實驗性地[ 3,4 ] 。 例如, 我們也許任意地制約自己描述coplanar (. 0 and θ1前廣泛被應用學習電子碰撞, 當后者是主要工具描繪離子原子和正子原子電離碰撞。 第二個結(jié)構(gòu)是土坎被設(shè)置沿圈子。秒鐘是取盡由于正子的捕獲的不可能的事由目標中堅力量。4. 理論模型我們想要討論在這通信的主要問題是如果有一些重要碰撞物產(chǎn)在正子原子碰撞, 那不是可測的,總共, 單或雙有差別的電離橫剖面, 并且那因為未被發(fā)現(xiàn)。 特別是, 它會允許我們學習變異當改變在二之間制約了運動學情況。 橫剖面利益在這范圍內(nèi)是轉(zhuǎn)折矩陣可能供選擇地被寫在崗位或預先的形式那里擾動潛力被定義為出生類型初始狀態(tài)哪些包括子彈頭的自由行動和最初的一定的狀態(tài)Ui 目標, 并且擾動潛力vi 簡單地是正子電子和正子中堅力量互作用的總和。 在連續(xù)流波浪作用這個選擇的最后渠道擾動潛力是[ 5 ]在純凈的庫侖潛力情況下, 畸變被給關(guān)于這個模型由佳瑞波帝和馬瑞吉拉[ 6 ] 提議為離子原子碰撞, 并且由Brauner 和布里格斯六年后為正子原子和電子碰撞[ 7 ] 。 (1992), 雖然他們保留許多制約在他們的離子沖擊電離分析。圖2, 我們觀察三個不同結(jié)構(gòu): 二個極小值和土坎。 第一理論解釋[ 9 ] 表示, 它分流以與1 相似的方式k 。 這爭執(zhí)的原因是那, 與離子對比盒, 正子外出的速度與那不是相似沖擊, 但主要傳播在角度和巨大。 因而, 觀察這結(jié)構(gòu)它是必要增加橫剖面的維度。 從目標反沖不充當在這個實驗性情況的重大角色, 當前一般理論給結(jié)果相似與那些由Berakdar [ 11 ] 獲得, 并且兩個跟隨嚴密實驗性價值。6. 托馬斯機制 現(xiàn)在讓我們走回到H2 的電離由1 keV 正子沖擊。 在這種情況下, 從電子和正子大量是相等的, 這兩個過程干涉在45 。7. 備鞍點機制 一定更難辨認。 在 離子原子碰撞案件, 查尋這個機制的理論和實驗性證據(jù)是陰暗由生動的爭論[ 1418 ] 。 這個機制被描述在圖4. 因而, 檢查備鞍點的提案是正確的, 我們看是否我們的演算顯示與備鞍點電子生產(chǎn)的這個描述是一致的結(jié)構(gòu)。 圖5 表示, 結(jié)構(gòu)完全出現(xiàn)從tp 期限。 你是知名的電子捕獲對連續(xù)流峰頂。橫剖面也許會被很多巨大的困難所阻礙, 但值得高興的是, 我們一直沒有錯過對問題許多不同的全方位的觀察, 唯一的遺憾就是對總橫剖面的研究。 Electron spectra。 Wannier。0) or a collinear motion (. θ2), so as to reduce the dependence of the problem to three or two independent variables, respectively. The other option is to integrate the quadruple differential cross section over one or more variables.The former has been widely used to study electron–atom collisions, while the latter has been the main tool to characterize ion–atom and positron–atom ionization collisions. Particularly important has been the use of single particle spectroscopy, where the momentum of one of the particles is measured. 3. Single particle momentum distributions In ionization by positron impact it is feasible to study the momentum distribution of any of the involved fragments. As is shown in Fig. 1, the momentum distributions for the emitted electron and the positron present several structures. First, we can observe a threshold at high electron or positron velocities because there is a limit in the kinetic energy that any particle can absorb from the system. The second structure is a ridge set along a circle. It corresponds to a binary collision of the positron with the emitted electron, with the target nucleus playing practically no role. Finally, there is a cusp and an anticusp at zero velocity in the electron and positron momentum distributions, respectively. The first one corresponds to the excitation of the electron to a lowenergy continuum state of the target. The second is a depletion due to the impossibility of capture of the positron by the target nucleus. These momentum distributions allow us to study the main characteristics of ionization collisions. However, we have to keep in mind that any experimental technique that analyzes only one of the particles in the finalstate can only provide a partial insight into the ionization processes. The quadruple differential cross sections might display collision properties that are washed out by integration in this kind of experiments. Fig. 1.. 4. Theoretical model The main question that we want to address in this munication is if there are some important collision properties in positron–atom collisions, that are not observable in total, single or double differential ionization cross sections, and that therefore have not yet been discovered. In order to understand the origin of these structures, we pare the corresponding cross sections with those obtained in ion–atom collisions. To fulfill this objective it is necessary to have a full quantummechanical treatment able to deal simultaneously with ionization collisions by impact of both heavy and light projectiles that is therefore equally applicable – for instance – to ion–atom or positron–atom collisions. A theory with this characteristics will allow us to study the changes of any given feature of multipledifferential crosssections when the mass relations among the fragments vary. In particular, it would allow us to study the variation when changing between the two restricted kinematical situations. The second important point is to treat all the interactions in the final state on an equal footing. As we have just explained, in ion–atom collisions, the internuclear interaction plays practically no role in the momentum distribution of the emitted electron and has therefore not been considered in the corresponding calculation. In this work, this kind of assumption has been avoided. The cross section of interest within this framework isThe transition matrix can be alternatively written in post or prior forms aswhere the perturbation potentials are defined by (HVi Ψi and (HVfΨf. For the Borntype initial statewhich includes the free motion of the projectile and the initial bound state Φi of the target, and the perturbation potential Vi is simply the sum of the positron–electron and positron–nucleus interactions. The transition matrix may then be deposed into two termsdepending on whether the positron interacts first with the target nucleus or the electron. In order to be consistent with our full treatment of the kinematics, it is necessary to describe the final state by means of a wavefunction that considers all the interactions on the same footing. Thus, we resort to a correlated C3 wave functionthat includes distortions for the three active interactions. The finalchannel per