【總結(jié)】第十七章 勾股定理 勾股定理第1課時 勾股定理的認識知識點1知識點2勾股定理的證明選項中,不能用來證明勾股定理的是(??D??)2.【教材延伸】如圖,“趙爽弦圖”是由四個全等的直角三角形拼成一個大的正方形,是我國古代數(shù)學的驕傲,巧妙地利用面積關(guān)系證明了勾股定理.已
2025-06-15 12:01
【總結(jié)】第2課時 勾股定理的應(yīng)用知識點1知識點2勾股定理的實際應(yīng)用樹,一棵高10?m,另一棵高4?m,兩樹相距8?鳥從一棵樹的樹梢飛到另一棵樹的樹梢,問小鳥至少飛行(??B??)?m?m?m?m
【總結(jié)】第十七章 勾股定理 勾股定理第1課時 勾股定理:如果直角三角形的兩條直角邊長分別為a,b,斜邊長為c,那么 .?明勾股定理的常用方法: ,如“趙爽弦圖”等.積如圖所示,則面積為S的正方形的邊長是( ) ?a2+b2=c2
2025-06-18 12:26
2025-06-17 20:59
【總結(jié)】第2課時 勾股定理的實際應(yīng)用實際生活中的與直角三角形有關(guān)的許多問題.如長度、高度、距離、面積、體積等問題往往需要用勾股定理來解決.強量得家里新購置的彩電熒光屏的長為58cm,寬為46cm,則這臺電視機的尺寸(即電視機屏幕對角線的長度,實際測量的誤差可不計)是( )(約2
2025-06-14 05:26
【總結(jié)】第十七章勾股定理勾股定理第1課時勾股定理的驗證勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a,b,c三條邊滿足的關(guān)系式是.a2+b2=c2知識點1:勾股定理的認識解:(1)A所代表的正方形的面積為144+81=225.(2)B所代表的正方形的面積為625-400=22
2025-06-16 15:03
【總結(jié)】勾股定理第2課時【基礎(chǔ)梳理】直角三角形中,根據(jù)勾股定理,已知兩邊可求第三邊:Rt△ABC中,∠C=90°,a,b,c分別為內(nèi)角A,B,C的對邊,(1)若已知邊a,b,則c=;(2)若已知邊a,c,則b=;(3)若已知邊b,c,則a=.22ab?
2025-06-12 21:10
【總結(jié)】勾股定理第2課時a,b,斜邊為a2=()b2=()c2=()c2-b2c2-a2a2+b2ABCD中,寬AB為1m,長BC為2m,求AC長.1m2mACBD??2222125m
2025-06-13 05:55
【總結(jié)】第十七章勾股定理勾股定理第1課時星期日老師帶領(lǐng)初二全體學生去凌峰山風景區(qū)游玩,同學們看到山勢險峻,查看景區(qū)示意圖得知:凌峰山主峰高約為900米,如圖:為了方便游人,此景區(qū)從主峰A處向地面B處架了一條纜車路線,已知山底端C處與地面B處相距1200米,∠ACB=90°,請問纜車路線AB長應(yīng)為多
2025-06-12 06:30
2025-06-21 08:15
【總結(jié)】勾股定理第3課時【基礎(chǔ)梳理】在數(shù)軸上找表示的點要在數(shù)軸上畫出表示的點,只要畫出長為的線段即可.利用勾股定理,長為的線段是直角邊為正整數(shù)__,__的直角三角形的斜邊.2313131313如圖,在數(shù)軸上找出表示3的點A,則OA=__,過點A作直線l垂直于O
2025-06-12 12:38
【總結(jié)】第十七章勾股定理勾股定理第1課時【基礎(chǔ)梳理】勾股定理1的小正方形,則正方形A的面積是__,正方形B的面積是___,正方形C的面積=邊長為7的正方形與4個直角邊為_____的直角三角形的面積差為___.9163和425a,b,斜邊長為c,那么___
2025-06-12 21:09
【總結(jié)】勾股定理第3課時在數(shù)學中也有這樣一幅美麗的“海螺型”圖案由此可知,利用勾股定理,可以作出長為21146785101112139161819171415n1111111111111111第七屆國際
2025-06-18 06:04
【總結(jié)】(1)當面積一定時,三角形的一邊長和這邊上的成反比例,長方形的長和成反比例.(2)當體積一定時,柱(錐)體的底面積與成反比例.(1)在行程問題中,路程一定時,平均速度與成反比例.(2)在工程問題中,工作總量一定時,工作時間與成反比例.
2025-06-13 12:20