【總結(jié)】5利用三角形全等測距離1.會利用三角形全等測距離.2.能在解決實(shí)際問題的過程中進(jìn)行有條理的思考和表述.3.體會數(shù)學(xué)與生活的密切聯(lián)系,能夠利用三角形全等解決生活中的實(shí)際問題.?對應(yīng)邊相等,對應(yīng)角相等.?(1)“SSS”:三邊對應(yīng)相等的兩個三角形全等.(2)“ASA”:兩角和它們的夾邊對應(yīng)相
2025-06-20 22:52
【總結(jié)】5利用三角形全等測距離【基礎(chǔ)梳理】,山腳下有A,B兩點(diǎn),要測出A,B兩點(diǎn)的距離的具體方案如下:在地上取一個可以直接到達(dá)A,B點(diǎn)的點(diǎn)O,連接AO并延長到C,使______,連接BO并延長到D,使______,再連接___,則AB=___.AO=COBO=DODCDC,是利用了全等三角形_
2025-06-14 04:06
2025-06-14 05:41
【總結(jié)】4用尺規(guī)作三角形,訓(xùn)練和提高學(xué)生的尺規(guī)作圖的技能,能根據(jù)條件作出三角形.結(jié)果的合理性.,培養(yǎng)學(xué)生的動手能力和探索精神.:∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB.、作一個角等于已知角..OBACDO′B′A′D′C′則∠A′
2025-06-13 05:40
【總結(jié)】4用尺規(guī)作三角形【基礎(chǔ)梳理】尺規(guī)作圖的工具是___________.基本作圖:作一條線段等于已知線段、作一個角等于已知角.直尺和圓規(guī)尺規(guī)作圖類型依據(jù)已知兩邊及其夾角作三角形____已知兩角一邊作三角形____(或AAS)已知三邊作三角形_
【總結(jié)】5利用三角形全等測距離1.會利用三角形全等測距離.2.能在解決實(shí)際問題的過程中進(jìn)行有條理的思考和表述.3.體會數(shù)學(xué)與生活的密切聯(lián)系,能夠利用三角形全等解決生活中的實(shí)際問題.?對應(yīng)邊相等,對應(yīng)角相等.?(1)“SSS”:三邊對應(yīng)相等的兩個三角形全等.(2)“ASA”:兩角和它們的夾邊對應(yīng)相等的
2025-06-12 08:02
【總結(jié)】七年級(下冊)初中數(shù)學(xué)認(rèn)識三角形回顧思考你還記得“過一點(diǎn)畫已知直線的垂線”嗎?012345678910012345012
2025-06-12 02:17
【總結(jié)】七年級(下冊)初中數(shù)學(xué)認(rèn)識三角形復(fù)習(xí)引入1.什么叫線段的中點(diǎn)??在三角形中,連接一個頂點(diǎn)與它對邊中點(diǎn)的線段,叫做這個三角形的中線(median).三角形的“中線”BE=ECBACE如圖5?1l,AE是BC邊上的中線.(1)在紙上畫
【總結(jié)】七年級(下冊)初中數(shù)學(xué)認(rèn)識三角形AcaBCb?由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形(triangle)。?三角形可以用符號“?”表示,如上圖是頂點(diǎn)為A,B,C的三角形,記作“?ABC”.它的三邊有時也用a,b,c來表示。知識回顧若將方屋頂?shù)目蚣軋D抽象成一個幾何圖
2025-06-12 12:12
2025-06-13 05:42
【總結(jié)】七年級(下冊)初中數(shù)學(xué)認(rèn)識三角形
【總結(jié)】第3課時3探索三角形全等的條件1.學(xué)會三角形全等的“邊角邊”的條件.2.經(jīng)歷探索三角形全等條件的過程,體會利用操作、歸納獲得數(shù)學(xué)結(jié)論的過程.3.掌握三角形全等的“SAS”條件.4.能運(yùn)用“SAS”證明簡單的三角形全等問題.還記得作一個角等于已知角的方法嗎?做一做:先任意畫出△ABC,再
【總結(jié)】3探索三角形全等的條件第3課時【基礎(chǔ)梳理】,有幾種可能的情況?答:________________________________________.,所畫的三角形_____全等;而已知三角形的兩邊及其中一邊的對角,所畫的三角形_______全等.兩種,即兩邊及夾角和兩邊及其中一邊的對角一定不一定
2025-06-18 05:36
【總結(jié)】第2課時3探索三角形全等的條件1.掌握三角形全等的“角邊角”“角角邊”判定方法.2.能運(yùn)用全等三角形的條件,解決簡單的推理證明問題.??能夠完全重合的兩個三角形叫做全等三角形.邊邊邊(SSS)一張教學(xué)用的三角形硬紙板不小心被撕壞了,如圖.你能制作一張與原來同樣大小的新教具嗎?能恢復(fù)原來三角形的原貌嗎?