【總結(jié)】2.二次函數(shù)y=ax2+bx+c的圖象是一條,它的對稱軸是,頂點坐標(biāo)是.當(dāng)a0時,拋物線開口向,有最點,函數(shù)有最值,是;當(dāng)a0時,拋物線開
2025-06-15 02:34
2025-06-15 07:11
【總結(jié)】第二十二章二次函數(shù)實際問題與二次函數(shù)第2課時實際問題二次函數(shù)(二)課前預(yù)習(xí)A.商品利潤的計算:(1)單件利潤=售價-__________;(2)總利潤=單件利潤×__________.B.建立二次函數(shù)模型解決橋拱等實際問題的一般步驟:(1)根據(jù)題意建立適當(dāng)?shù)腳______________
2025-06-16 01:21
【總結(jié)】專題強化(二)求二次函數(shù)的解析式
2025-06-15 12:09
2025-06-12 12:37
【總結(jié)】小專題(三)求二次函數(shù)的解析式求二次函數(shù)的解析式一般用待定系數(shù)法,但要根據(jù)不同條件,設(shè)出恰當(dāng)?shù)慕馕鍪?物線上任意三點,通??稍O(shè)一般式;,通常可設(shè)頂點式;x軸的兩個交點的橫坐標(biāo)或給出對稱軸、兩交點的距離,通常可設(shè)交點式;,可設(shè)平移式.類型1三點型A(1,0),B(0,6),C(4,6)三點,則這個
2025-06-16 02:31
【總結(jié)】第二十二章二次函數(shù)實際問題與二次函數(shù)第1課時實際問題二次函數(shù)(一)課前預(yù)習(xí)A.在利用二次函數(shù)求實際問題的最大(或最?。┲禃r,既要考慮自變量的__________,還要考慮實際問題的多種情況.B.二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標(biāo)是__________,對稱軸是__________,當(dāng)
2025-06-16 01:08
【總結(jié)】第二十二章二次函數(shù)二次函數(shù)的圖象和性質(zhì)二次函數(shù)學(xué)習(xí)指南知識管理歸類探究分層作業(yè)當(dāng)堂測評學(xué)習(xí)指南教學(xué)目標(biāo)通過對多個實際問題的分析,讓學(xué)生感受二次函數(shù)作為刻畫現(xiàn)實世界有效模型的意義;通過觀察和
2025-06-14 04:33
【總結(jié)】最大利潤與二次函數(shù)w頂點式,對稱軸和頂點坐標(biāo)公式:二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)??????????abacab44,22abx2??直線頂點式對稱軸頂點坐標(biāo)回味無窮.44222abacabxay????????
2025-06-12 05:40
【總結(jié)】例1.某涵洞是拋物線形,它的截面如圖所示,現(xiàn)測得水面寬4m,涵洞頂點O到水面的距離為3m,在直角坐標(biāo)系內(nèi),涵洞所在的拋物線的函數(shù)關(guān)系式是什么?3m4mOAB解:如圖,以AB的垂直平分線為y軸,以過點O的y軸的垂線為x軸,建立了直角坐標(biāo)系。由題意,得點B的坐標(biāo)為:(
【總結(jié)】實際問題與二次函數(shù)第1課時二次函數(shù)與圖形面積?學(xué)習(xí)目標(biāo):能夠表示實際問題中變量之間的二次函數(shù)關(guān)系,會運用二次函數(shù)的頂點坐標(biāo)求出實際問題的最大值(或最小值).?學(xué)習(xí)重點:探究利用二次函數(shù)的最大值(或最小值)解決實際問題的方法.課件說明y=2x2-8x+9的頂點坐標(biāo).
【總結(jié)】第二十二章二次函數(shù)二次函數(shù)的圖像和性質(zhì)第1課時二次函數(shù)課前預(yù)習(xí):一般地,形如__________(a,b,c是常數(shù),a≠0)的函數(shù),叫做二次函數(shù).其中x是自變量,a是___________,b是___________,c是_________.B.自變量的取值范圍:(1)當(dāng)表達(dá)式的分母不含有自變量時
2025-06-18 12:15
【總結(jié)】第二十二章檢測題 時間:120分鐘 滿分:120分 一、選擇題(每小題3分,共30分)1.下列函數(shù)中,不是二次函數(shù)的是( )A.y=1-x2B.y=2(x-1)2+4C.y=(x-1)(x+4)D.y=(x-2)2-x22.(2016·衢州)二次函數(shù)y=ax2+bx+c(a≠
2025-01-13 22:32
【總結(jié)】第二十二章二次函數(shù)專題8運用幾何知識求二次函數(shù)的解析式武漢專版·九年級上冊一、運用面積條件1.已知二次函數(shù)y=ax2-4ax+b(a≠0)的圖象與x軸交于點A(1,0),B,與y軸正半軸交于點C,且S△ABC=4,求二次函數(shù)的解析式.二、結(jié)合一次函數(shù)的條件
2025-06-16 01:18
【總結(jié)】實際問題與二次函數(shù)九年級上冊學(xué)習(xí)目標(biāo)?1、分析實際問題中變量之間的二次函數(shù)關(guān)系;?2、會運用二次函數(shù)求實際問題中的最大值戒最小值;?3、能應(yīng)用二次函數(shù)的性質(zhì)解決圖形中最大面積問題.1、用8米長的繩子圍成的矩形的最大面積是。2、用長度一定的繩子圍成一個矩形,如果矩形的一邊長x(m)不面積y(
2025-06-18 05:58