【總結】復習回顧思考:公式C'2α有哪些變形形式?升冪縮角公式:降冪擴角公式:§3二倍角的三角函數(shù)(二)1.例題與練習例:歸納:(1)降冪擴角公式:(2)升冪縮角公式:例:注意:根號前的符號由α/2所在象限相應的三角函數(shù)值的符號確定,如果α/2所在象限無法確定,則應保留根
2025-06-06 06:26
【總結】復習回顧升冪縮角公式:降冪擴角公式:半角公式:萬能公式:“±”由所在象限原函數(shù)的符號來確定.與練習§3二倍角的三角函數(shù)(三)例:1例R的圓形木料截成長方形(如圖),應怎樣截取,才能使長方形面積最大?OABR解:如圖,設圓心為O,長方形面積為S,∠AOB=α.
【總結】小結復習一、本章內(nèi)容結構任意角的概念角度制與弧度制弧長與扇形面積公式應用任意角的三角函數(shù)計算與化簡、證明恒等式應用三角函數(shù)的圖象和性質誘導公式應用三角函數(shù)的簡單應用二、知識要點:正角:按逆時針方向旋轉形成的角負角:按順時針方向旋轉形成的角零角:、象限角::(1)
【總結】復習回顧、余弦公式::、余弦、正切公式的靈活運用:(1)公式的正用、逆用、變形運用;(2)角的變換、單角化復角、復角化單角的變形運用.§2兩角和與差的三角函數(shù)(三)例:證明:左邊==右邊∴等式成立.練習:歸納:在三角恒等變形時,要注意(1)角的變形,如拆角或并角;(2)公式的正用、逆用及
【總結】復習回顧、余弦公式:、余弦公式的靈活運用:(1)公式的正用和逆用;(2)角的變換、單角化復角、復角化單角的變形運用.§2兩角和與差的三角函數(shù)(二)注意!解:原式例:注意!公式的逆向運用.例、差角公式求的值.練習,2.解:原式例
【總結】復習回顧tanα1sinαcosαcotαsecαcscα(1)平方關系:(2)商數(shù)關系:(3)倒數(shù)關系:§1同角三角函數(shù)的基本關系(二)、求值例:練習:解:原式=例:練習:解:原式=例sinθ,cosθ是關于x的方程x2-ax+a=0的兩個根(a∈R).(1)求sin3
2025-06-06 06:25
【總結】"【志鴻全優(yōu)設計】2021-2021學年高中數(shù)學課后訓練北師大版必修4"1.過點A(2,3),且垂直于向量a=(2,1)的直線方程為().A.2x+y-7=0B.2x+y+7=0C.x-2y+4=0D.x-2y-4=02.△ABC中,AB邊的高為CD,若CB
2024-11-30 23:41
【總結】【金榜教程】2021年高中數(shù)學向量應用舉例檢測試題北師大版必修4(30分鐘50分)一、選擇題(每小題4分,共16分)l:mx+2y+16=0,向量n=(1-m,1),若n∥l,則直線l的一個法向量為()(A)(-2,2)(B)(1,2)(C)(2,1)(D)(2,2)
【總結】陜西省榆林育才中學高中數(shù)學第2章《平面向量》11向量應用舉例(1)導學案北師大版必修4使用說明據(jù)學習目標,認真閱讀課本第99頁到第100頁內(nèi)容,完成預習引導的全部內(nèi)容.(最好在課前完成討論)發(fā)揮學習小組作用,積極討論,大膽展示,完成合作探究部分.學習目標.,了解向量在解析幾何中的應用.,讓學生
2024-12-04 23:43
【總結】陜西省榆林育才中學高中數(shù)學第2章《平面向量》12向量應用舉例(2)導學案北師大版必修4使用說明1.課前根據(jù)學習目標,認真閱讀課本內(nèi)容,完成預習引導的全部內(nèi)容.,大膽展示,發(fā)揮學習小組的高效作用,完成合作探究部分.學習目標1.經(jīng)歷用向量方法解決某些簡單的平面幾何問題、力學問題與其他一些實際問題的過程,體會向量是
2024-11-19 20:36
【總結】向量在物理中的應用舉例向量起源于物理,是從物理學中抽象出來的數(shù)學概念.物理學中的許多問題,如位移、速度、加速度等都可以利用向量來解決.用數(shù)學知識解決物理問題,首先要把物理問題轉化為數(shù)學問題,即根據(jù)題目的條件建立數(shù)學模型,再轉化為數(shù)學中的向量運算來完成.1.解決力學問題例1質量為m的物體靜止地放在斜面上,斜面與水平面的夾角為?,求斜面對于物體
2024-11-19 23:18
【總結】Oxya引入:,點A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2024-11-17 15:05
【總結】應用舉例(第1課時)學習目標、余弦定理等知識和方法解決一些有關測量距離的實際問題,了解常用的測量相關術語.;同時提升運用圖形、數(shù)學符號表達題意和應用轉化思想解決數(shù)學問題的能力.合作學習一、設計問題,創(chuàng)設情境問題1:在日常生活和工農(nóng)業(yè)生產(chǎn)中,為了達到某種目的,常常想測得一個點與另一個不可到達的點間的距離或在遠處的
2024-12-09 03:48
【總結】?2.2等差數(shù)列的前n項和?一、等差數(shù)列{an}的前n項和公式?一般地,我們稱a1+a2+a3+…+an為數(shù)列{an}的前n項和,用Sn表示,即Sn=①________.?對于等差數(shù)列{an}來說,設其首項為a1,末項為an,項數(shù)為n,由倒序相加法可知其前n項和Sn=②:等差數(shù)列前n項和
2024-11-17 17:38
【總結】直線方程的點斜式1.方程y=k(x+4)表示().A.過點(-4,0)的所有直線B.過點(4,0)的一切直線C.過點(-4,0)且不垂直于x軸的一切直線D.過點(-4,0)且除去x軸的一切直線2.已知直線l過點M(-1,0),并且斜率為1,則直線l的方程是().A.x+y+
2024-12-03 03:18