【總結(jié)】May21,202173-347GameTheoryLecture31Static(orSimultaneous-Move)GamesofCompleteInformationNashEquilibriumBestResponseFunctionMay21,202173-347GameTheoryLecture32
2024-10-18 12:48
【總結(jié)】May20,202173-347GameTheoryLecture21Static(orSimultaneous-Move)GamesofCompleteInformationDominatedStrategiesNashEquilibriumMay20,202173-347GameTheoryLecture22O
2024-10-19 13:57
【總結(jié)】第十三章博弈論和競(jìng)爭(zhēng)策略幾個(gè)經(jīng)典的博弈1.囚徒的困境2.賭勝博弈3.性別之戰(zhàn)囚徒的困境與破解?囚徒的困境是圖克(Tucker)1950年提出的?該博弈是博弈論最經(jīng)典、著名的博弈?該博弈本身講的是一個(gè)法律刑偵或犯罪學(xué)方面的問(wèn)題,但可以擴(kuò)展到許多經(jīng)濟(jì)問(wèn)題,以及各種社會(huì)問(wèn)題,可以揭示市場(chǎng)經(jīng)濟(jì)的根本缺陷
2025-05-06 13:29
【總結(jié)】June23,202173-347GameTheoryLecture241Static(orSimultaneous-Move)GamesofInpleteInformationBayesianNashEquilibriumJune23,202173-347GameTheoryLecture242OutlineofS
2024-10-19 13:59
【總結(jié)】May29,202173-347GameTheoryLecture81Static(orSimultaneous-Move)GamesofCompleteInformationMixedStrategyNashEquilibriumMay29,202173-347GameTheoryLecture82Outlineo
【總結(jié)】June5,202173-347GameTheoryLecture131DynamicGamesofCompleteInformationDynamicGamesofCompleteandPerfectInformationJune5,202173-347GameTheoryLecture132Outlineof
【總結(jié)】May19,202173-347GameTheoryLecture11Static(orSimultaneous-Move)GamesofCompleteInformationIntroductiontoGamesNormal(orStrategic)FormRepresentationMay19,202173-34
【總結(jié)】June20,202173-347GameTheoryLecture231Static(orSimultaneous-Move)GamesofInpleteInformationIntroductiontoStaticBayesianGamesJune20,202173-347GameTheoryLecture232
【總結(jié)】June16,202173-347GameTheoryLecture191DynamicGamesofCompleteInformationDynamicGamesofCompleteandImperfectInformationJune16,202173-347GameTheoryLecture192Outlin
【總結(jié)】June19,202173-347GameTheoryLecture221Static(orSimultaneous-Move)GamesofInpleteInformationIntroductiontoStaticBayesianGamesJune19,202173-347GameTheoryLecture222
2024-10-18 12:47
【總結(jié)】June10,202173-347GameTheoryLecture151DynamicGamesofCompleteInformationDynamicGamesofCompleteandPerfectInformationJune10,202173-347GameTheoryLecture152Outline
【總結(jié)】實(shí)例4.斗雞博弈1囚徒困境兩個(gè)小偷作案后被警察抓住,分別關(guān)在不同的屋子里審訊。警察告訴他們:如果兩個(gè)人都坦白,各判刑8年;如果兩個(gè)人都抵賴(lài),各判1年(可能因證據(jù)不足);如果其中一人坦白另一人抵賴(lài),坦白的放出去,而抵賴(lài)的判刑10年。
2025-05-06 13:30
【總結(jié)】第十一章博奕論和對(duì)策行為博弈論和對(duì)策行為?概論博奕論(theGameTheory)也就是運(yùn)籌學(xué)中的對(duì)策論。對(duì)策思想最早產(chǎn)生于我國(guó)古代。早在兩千多年的春秋時(shí)期,孫武在《孫子兵法》中論述的軍事思想和治國(guó)策略,就蘊(yùn)育了豐富和深刻的對(duì)策論思想。孫武的后代孫
【總結(jié)】生活中的博弈論假如你正跟戀人用手機(jī)通電話(huà),突然信號(hào)斷了。這時(shí),你會(huì)立即撥電話(huà)過(guò)去,還是等你的戀人撥電話(huà)過(guò)來(lái)?很顯然,你是否應(yīng)撥電話(huà)過(guò)去,取決于你的戀人是否會(huì)撥過(guò)來(lái)。如果你們其中一方要撥,那么另一方最好是等待;如果一方等待,那么另一方就最好是撥過(guò)去。因?yàn)槿绻p方都撥,那么就會(huì)出現(xiàn)線(xiàn)路忙;如果雙方都等待,那么時(shí)間就會(huì)在等待中
2025-01-17 18:48
【總結(jié)】博弈論主講:姜春艷博弈論兩人同行打獵,忽遇一猛獅。一人卸下身上物品狂奔,同伴不解,問(wèn)道:“汝能勝獅?”答曰:“非需勝獅,只需勝汝!”-佚名博弈論概述:引言博弈論模擬作戰(zhàn)-你來(lái)當(dāng)司令如果
2024-10-19 02:27