freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

武漢大學(xué)電氣工程學(xué)院信號與系統(tǒng)matlab仿真報(bào)告(編輯修改稿)

2024-12-02 08:11 本頁面
 

【文章內(nèi)容簡介】 用系統(tǒng)函數(shù)分子和分母多項(xiàng)式系數(shù)行向量來表示。試驗(yàn)中用到的 MATLAB 函數(shù)如下: [H,w]=freqs(b,a): b,a 分別為連續(xù)時(shí)間 LTI 系統(tǒng)的微分方程右邊和左邊的系數(shù)向量,返回的頻率響應(yīng)在各頻率點(diǎn)的樣點(diǎn)值(復(fù)數(shù))存放在 H 中,系統(tǒng)默認(rèn)的樣點(diǎn)數(shù)目為 200 點(diǎn); Hm=abs(H):求模數(shù),即進(jìn)行 HHm? 運(yùn)算,求得系統(tǒng)的幅度頻率響應(yīng),返回值存于 Hm之中。 real(H):求 H 的實(shí)部; imag(H):求 H 的虛部; phi=atan(imag(H)./(real(H)+eps)):求相位頻率響應(yīng)特性, atan()用來計(jì)算反正切值;或者 phi=angle(H):求相位頻率響應(yīng)特性; tao=grpdlay(num, den, w):計(jì)算系統(tǒng)的相位頻率響應(yīng)所對應(yīng)的群延時(shí); 計(jì)算頻率響應(yīng)的函數(shù) fregs()的另一種形式是: H=freg(b, a, w):在指定的頻率范圍內(nèi)計(jì)算系統(tǒng)的頻率響應(yīng)特性。在使用這種形式的fregs/freqz 函數(shù)時(shí),要在前面先指定頻率變量 w 的范圍。 信號的抽樣及抽樣定理 根據(jù)傅里葉變換的頻率卷積定理,時(shí)域兩個(gè)信號相乘,對應(yīng)的積的傅里葉變換等于這兩個(gè)信號的傅里葉變換之間的卷積。所以,已知抽樣信號 )(txs 的傅里葉變換為: ????? ?? n ss njXTjX ))((1)( ??? 實(shí)際抽樣過程,很容易用簡單的數(shù)學(xué)公式來描述。設(shè)連續(xù)時(shí)間信號用 )(tx 表示,抽樣周期為sT ,抽樣頻率為 s? ,則已抽樣信號的數(shù)學(xué)表達(dá)式為: )()(][ snTt nTxtxnx s ?? ? 信號與系統(tǒng)上機(jī)實(shí)驗(yàn) 14 三、實(shí)驗(yàn)內(nèi)容 Q41:給范例程序關(guān)鍵語句加注釋 Q42:運(yùn)行示例程序并保存結(jié)果。 例一: clear,close,clc。 b=1。 a=[1,3,2]。 [H,w]=freqs(b,a)。 H=H.39。 Hm=abs(H)。 phi=angle(H)*180/pi。 Hr=real(H)。 Hi=imag(H)。 subplot(2,2,1)。 plot(w,Hm)。 grid on。 title(39。Magnitude response39。)。 xlabel(39。Frequency in rad/sec39。)。 subplot(2,2,2)。 plot(w,phi)。 grid on。 title(39。Phase response39。)。 xlabel(39。Frequency in rad/sec39。)。 subplot(2,2,3)。 plot(w,Hr)。 grid on。 title(39。Real part of frequencey response39。)。 xlabel(39。Frequency in rad/sec39。)。 subplot(2,2,4)。 plot(w,Hi)。 grid on。 title(39。Imaginary part of frequencey response39。)。 xlabel(39。Frequency in rad/sec39。)。 信號與系統(tǒng)上機(jī)實(shí)驗(yàn) 15 例二: clear。close all。clc。%初始化 t=0::10。 Ts=1/4。 n=0:Ts:10。 x=cos(*pi*t)。 xn=cos(*pi*n)。 subplot(2,1,1) plot(t,x)。 title(39。A continuoustime signal x(t)39。)。 xlabel(39。Time t39。)。 subplot(2,1,2) stem(n,xn,39。.39。)。 title(39。The sampled version x[n] of x(t)39。)。 xlabel(39。Time index n39。)。 信號與系統(tǒng)上機(jī)實(shí)驗(yàn) 16 例三 : clear。close all。clc。 tmax=4。 dt=。 t=0:dt:tmax。 Ts=1/10。 ws=2*pi/Ts。 w0=20*pi。 dw=。 w=w0:dw:w0。 n=:1:tmax/Ts。 x=exp(4*t).*u(t)。 xn=exp(4*n*Ts)。 subplot(2,2,1) plot(t,x)。 title(39。A continuoustime signal x(t)39。)。 xlabel(39。Time t39。)。 axis([0,tmax,0,1])。 grid on。 subplot(2,2,3) stem(n,xn,39。.39。)。 title(39。The sampled version x[n] of x(t)39。)。 xlabel(39。Time index n39。)。 axis([0,tmax/Ts,0,1])。 grid on。 Xa=x*exp(i*t39。*w)*dt。 X=0。 for k=8:8 X=X+x*exp(i*t39。*(wk*ws))*dt。 end subplot(2,2,2) plot(w,abs(Xa)) title(39。Magnitude spectrum of x(t)39。)。 xlabel(39。Frequency in radians/s39。)。 grid on axis([60,60,0,*max(abs(Xa))])。 subplot(2,2,4) plot(w,abs(X)) title(39。Magnitude spectrum of x[n]39。)。 xlabel(39。Frequency in radians/s39。)。 grid on axis([60,60,0,*max(abs(Xa))])。 信號與系統(tǒng)上機(jī)實(shí)驗(yàn) 17 Q43:已知 RLC 二階低通濾波器如圖所示,其中 L=, C=,R=2Ω。試用 MATLAB 繪制出該頻率響應(yīng)。 程序: clear。close all。clc。 L=。 C=。 R=2。 A=[L*C,L/R,1]。 B=1。 [H,w]=freqs(B,A)。 H=H.39。 Hm=abs(H)。 phi=angle(H)*180/pi。 Hr=real(H)。 Hi=imag(H)。 subplot(2,2,1)。 plot(w,Hm)。 grid on。 title(39。Magnitude response39。)。 xlabel(39。Frequency in rad/sec39。)。 subplot(2,2,2)。 plot(w,phi)。 grid on。 title(39。Phase response39。)。 xlabel(39。Frequency in rad/sec39。)。 subplot(2,2,3)。 plot(w,Hr)。 grid on。 title(39。Real part of frequencey response39。)。 xlabel(39。Frequency in rad/sec39。)。 subplot(2,2,4)。 plot(w,Hi)。grid on。 title(39。Imaginary part of frequencey response39。)。 xlabel(39。Frequency in rad/sec39。)。 )(tug L1 )(tus R1 2? C1 100mF 800mH 信號與系統(tǒng)上機(jī)實(shí)驗(yàn) 18 實(shí)驗(yàn)五 連續(xù)時(shí)間系統(tǒng)的復(fù)頻域分析 一、實(shí)驗(yàn)?zāi)康? 掌握拉普拉斯變換的物理意義、基本性質(zhì)及應(yīng)用; 掌握用拉普拉斯變換求解連續(xù)時(shí)間 LTI 系統(tǒng)的時(shí)域響應(yīng); 掌握系統(tǒng)函數(shù)的概念,掌握系統(tǒng)函數(shù)的零、極點(diǎn)分布與系統(tǒng)的穩(wěn)定性、時(shí)域特性等之間的互相關(guān)系; 掌握用 MATLAB 對系統(tǒng)進(jìn)行變換域分析的常用函數(shù)及編程方法; 基本要求:掌握拉普拉斯變換及其基本性質(zhì),掌握應(yīng)用拉普拉斯變換求解系統(tǒng)的微分方程,能夠自己編寫程序完成對系統(tǒng)時(shí)域響應(yīng)的求解。掌握并理解系統(tǒng)函數(shù)的概念,掌握系統(tǒng)函數(shù)零極點(diǎn)與系統(tǒng)時(shí)域和頻域特性之間的關(guān) 系,能夠編寫程序完成對系統(tǒng)的一些主要特性如穩(wěn)定性、因果性等的分析。 二、實(shí)驗(yàn)原理及方法 連續(xù)時(shí)間 LTI 系統(tǒng)的復(fù)頻域描述 拉普拉斯變換主要用于系統(tǒng)分析。描述系統(tǒng)分析。描述系統(tǒng)的另一種數(shù)學(xué)模型就是建立在拉普拉斯變換基礎(chǔ)上的“系統(tǒng)函數(shù)” —— H(s): )]([)( )]([L)()( txLsX tysYsH 換系統(tǒng)激勵(lì)信號的拉氏變 換系統(tǒng)沖擊響應(yīng)的拉氏變??? 系統(tǒng)函數(shù) H(s)的實(shí)質(zhì)就是單位沖激響應(yīng) h(t)的拉普拉斯變換。因此,系統(tǒng)函數(shù)也可以定義為:???? ?? dtethtH st)()( 所以,系統(tǒng)函數(shù) )(tH 的一些特點(diǎn)是和系 統(tǒng)的時(shí)域響應(yīng) )(th 的特點(diǎn)對應(yīng)的。在教材中,我們求解系統(tǒng)函數(shù)的方法,常用的是根據(jù)描述系統(tǒng)的線性系數(shù)微分方程,經(jīng)過拉氏變換之后得到系統(tǒng)函數(shù) )(tH 。 假設(shè)描述一個(gè)連續(xù)時(shí)間 LTI 系統(tǒng)的線性常系數(shù)微分方程為: ? ?? ??Nk Mk kkkkkk dt txdbdt tyda0 0 )()( 對上式兩邊做拉普拉斯變換,則有: ??????NkkkMkkksasbsXsYsH00)()()( 系統(tǒng)函數(shù)的零極點(diǎn)分布圖 系統(tǒng)函數(shù)的零極點(diǎn)分布圖能夠直觀地表示零點(diǎn)和極點(diǎn)在 s 平面上的位置,從而比較容 易分析系統(tǒng)函數(shù)的收斂域和穩(wěn)定性。 信號與系統(tǒng)上機(jī)實(shí)驗(yàn) 19 對于一個(gè)連續(xù)時(shí)間 LTI 系統(tǒng),它的全部特性包括穩(wěn)定性、因果性和它具有何種濾波特性等完全由它的零極點(diǎn)在 s 平面上的位置所決定。 拉普拉斯變換與傅里葉變換之間的關(guān)系 根據(jù)課本知識可知,拉普拉斯變換與傅里葉變換之間的關(guān)系可表述為:傅里葉變換是信號在虛軸上的拉普拉斯變換,也可以用下面的數(shù)學(xué)表達(dá)式表示: ?? jssHjH ?? )()( 上式表明,給定一個(gè)信號 )(th ,如果它的拉普拉斯變換存在的話,它的傅里葉變換不一定存在,只有當(dāng)它 的拉普拉斯變換的收斂域包括了整個(gè)虛軸,則表明傅里葉變換時(shí)存在的。 系統(tǒng)函數(shù)的極點(diǎn)分布與系統(tǒng)的穩(wěn)定性和因果性之間的關(guān)系 一個(gè)穩(wěn)定的 LTI 系統(tǒng),它的單位沖激響應(yīng) )(th 滿足絕對可積條件,即 ??????dtth )( 同時(shí),我們還應(yīng)該記得一個(gè)信號的傅里葉變換的存在條件就是這個(gè)信號滿足絕對可積條件,所以,如果系統(tǒng)是穩(wěn)定的話,那么,該系統(tǒng)的頻率響應(yīng)也必然是存在的。又根據(jù)傅里葉變換與拉普拉斯變換之間的關(guān)系,可進(jìn)一步推出,穩(wěn)定的系統(tǒng), 其系統(tǒng)函數(shù)的收斂域必然包括虛軸。穩(wěn)定的因果系統(tǒng),其系統(tǒng)函數(shù)的全部極點(diǎn)一定位于 s 平面的左半平面
點(diǎn)擊復(fù)制文檔內(nèi)容
高考資料相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1