【文章內(nèi)容簡(jiǎn)介】
brupt change in direction of the momentdeflection response at first cracking, nor does it predict the correct shape of the postcracking momentdeflection curve. The underestimation of shortterm deflection using the ACI318 model is considerably greater in practice than that indicated by the laboratory tests reported here. Unlike the Eurocode 2 and BS 8110 approaches, the ACI 318 model does not recognize or account for the reduction in the cracking moment that will inevitably occur in practice due to tension induced in the concrete by drying shrinkage or thermal deformations. For many slabs, cracking will occur within weeks of casting due to early drying or temperature changes, often well before the slab is exposed to its full service loads. By limiting the concrete tensile stress at the level of the tensile reinforcement to just MPa, the BS 8110 approach overestimates the deflection of the test slabs both below and immediately above the cracking moment. This is not unreasonable and accounts for the loss of stiffness that occurs in practice due to restraint to early shrinkage and thermal deformations. Nevertheless, the BS 8110 approach provides a relatively poor model of thepostcracking stiffness and incorrectly suggests that the average tensile force carried by the cracked concrete actually increases as M increases and the neutral axis rises. As a result, the slope of the BS 8110 postcracking momentdeflection plot is steeper than the measured slope for all slabs. The approach is also more tedious to use than either the ACI or Eurocode 2 approaches. In all cases, deflections calculated using Eurocode 2[ Eqs.(3)–(5)] are in much closer agreement with the measured deflection over the entire postcracking load range. As can be seen in Fig. 2, the shape of the loaddeflection curve obtained using Eurocode 2 is a far better representation of the actual curve than that obtained using Eq. (1). Considering the variability of the concrete material properties that affect the inservice behavior of slabs and the random nature of cracking, the agreement between the Eurocode 2 predictions and the test results over such a wide range of tensile reinforcement ratios is quite remarkable. With the ratio of () in Table 2 varying between and with a mean value of , the Eurocode 2 approach certainly provides a better estimate of shortterm behavior than either ACI 318 or BS8110. Although tension stiffening has only a relatively minor effect on the deflection of heavily reinforced beams, it is very significant in lightly reinforced members where the ratio Iuncr / Icr is high, such as most practical reinforced concrete floor slabs. The models for tension stiffening incorporated in ACI (2005), Eurocode 2 (CEN 1992), and BS 8110 (1985) have been presented and their applicability has been assessed for lightly reinforced concrete deflections calculated using the three code models have been pared with measured deflections from 11 laboratory tests on slabs containing varying quantities of steel reinforcement. The Eurocode 2 approach (Eq.(5) has been shown to more accurately model the shape of the instantaneous loaddeformation response for lightly reinforced members and be far more reliable than the ACI 318 approach (Eq.(1).中文翻譯1鋼筋混凝土板的拉伸硬化過程分析R. Ian Gilbert摘 要:混凝土的抗拉能力在計(jì)算鋼筋混凝土梁或板的強(qiáng)度時(shí)通常被忽視,盡管具體的拉應(yīng)力繼續(xù)進(jìn)行,由于拉鋼筋到混凝土之間裂縫的轉(zhuǎn)換力量。這一種混凝土的拉力被稱為混凝土的張力硬化。在開裂后它會(huì)影響鋼筋混凝土的剛度,因此它的撓度和裂縫寬度必須根據(jù)屈服強(qiáng)度負(fù)載。對(duì)輕混凝土,例如樓板,全部裂縫的彎曲剛度比沒有裂縫部分的要小很多,張力加勁有助于剛度。在本文中,ACI方法必須考慮到緊張加勁,歐洲和英國(guó)的方法是嚴(yán)格評(píng)估和預(yù)測(cè)與實(shí)驗(yàn)結(jié)果進(jìn)行比較。最后,建議依據(jù)鋼筋混凝土樓板的建模張力加勁設(shè)計(jì)控制偏轉(zhuǎn)。關(guān)鍵詞:開裂,蠕變撓度,混凝土,鋼筋,適用性,收縮,混凝土磚。由于拉鋼筋到混凝土之間裂縫的轉(zhuǎn)換力量,拉伸能力在計(jì)算時(shí)通常忽略鋼筋混凝土梁或板的強(qiáng)度,盡管具體的拉應(yīng)力將持續(xù)。這一種混凝土的拉力被稱為張力硬化,它會(huì)影響各部分的剛度,因此必須考慮其撓度和裂縫寬度。 隨著高強(qiáng)度鋼筋的運(yùn)用,增強(qiáng)混凝土板通常使用相對(duì)少量的拉鋼筋,經(jīng)常接近相關(guān)建筑法規(guī)允許的最低允許值。對(duì)于這樣的構(gòu)件,彎曲完全開裂的一個(gè)截面剛度比未開裂的截面小許多倍,張力加勁大大促進(jìn)了開裂后構(gòu)件的剛度。在設(shè)計(jì)中,撓度和裂縫的控制通常是在屈服水平調(diào)整考慮的,并在開裂后剛度的建模精確是必需的。撓度計(jì)算中最常用的方法包括確定破解構(gòu)件平均有效的轉(zhuǎn)動(dòng)慣量()。幾種不同的經(jīng)驗(yàn)公式可用于,包括著名的方程開發(fā)Branson(1965)和ACI 318(ACI 2005)。其他的張力硬化模式包括在Eurocode 2(CEN1992)和(British Standard BS 8110 1985),最近,Bischoff(2005)表明,布蘭森的方程對(duì)含有少量的鋼筋混凝土構(gòu)件鋼筋平均剛度評(píng)估過高,他提出了一個(gè)對(duì)于的替代方程,這基本上是與Eurocode 2方案兼容。在本文中,包括張力加勁在內(nèi)的各種方法在混凝土結(jié)構(gòu)設(shè)計(jì),包括在Eurocode 2,ACI 318,BS8110模式,批判性進(jìn)行評(píng)估經(jīng)驗(yàn)預(yù)測(cè)與實(shí)測(cè)撓度進(jìn)行了比較。最后,模擬張力加勁的建議結(jié)構(gòu)設(shè)計(jì)均被包括在內(nèi)??紤]一個(gè)簡(jiǎn)支負(fù)載的變形響應(yīng),鋼筋混凝土板如圖1所示。在負(fù)載小于開裂負(fù)載的情況下,該構(gòu)件未開裂和表現(xiàn)均勻的彈性,以及撓度斜率是成正比的未開裂的轉(zhuǎn)動(dòng)慣量的換算界面。該構(gòu)件的第一裂縫在當(dāng)極端纖維在混凝土拉應(yīng)力的最大部分到達(dá)混凝土彎拉強(qiáng)度破裂或時(shí)。有一個(gè)剛度突變,并立即出現(xiàn)裂紋。在包含了破碎的部分,抗彎剛度顯著下降,但大部分仍然未開裂的梁,隨著負(fù)載的增加,出現(xiàn)更多的裂縫形式和整個(gè)構(gòu)件的平均抗彎構(gòu)件減少。 如果在梁的混凝土開裂區(qū)域內(nèi)施加拉力而沒有壓力,負(fù)載變形關(guān)系將遵循虛線ACD,如圖1。如果平均極端纖維拉伸應(yīng)力在混凝土開裂后留在fr,將遵循虛線AE。事實(shí)上,實(shí)際的反應(yīng)是介于這兩個(gè)極端自建,如圖1所示為實(shí)線AB型。實(shí)際反應(yīng)之間的區(qū)別和零張力反應(yīng)的張力是加強(qiáng)效應(yīng)。隨著越來越多的裂縫發(fā)展和實(shí)際響應(yīng)趨向于零緊張反應(yīng),一般的拉應(yīng)力混凝土減少,至少要等到裂縫模式充分開發(fā)和裂縫的數(shù)量趨于穩(wěn)定。對(duì)于含有少量的拉結(jié)鋼筋磚(通常= As/),緊張硬化可能超過50%的鋼筋混凝土的剛度破壞屈服加載而且仍然要達(dá)到和超過的鋼產(chǎn)量和負(fù)荷接近極限地步。依據(jù)在長(zhǎng)期撓度的計(jì)算下,可能是由于綜合作用的拉伸蠕變、蠕變斷裂,收縮開裂,在持續(xù)負(fù)載下張力加勁效應(yīng)隨著時(shí)間而減少。梁的彎曲或板在使用載重?fù)隙瓤梢运查g從彈性論計(jì)算通過混凝土彈性模量Ec和有效的慣性矩。的價(jià)值對(duì)于構(gòu)件是計(jì)算使用Eq.[1]計(jì)算公式為一個(gè)在跨中簡(jiǎn)支構(gòu)件和加權(quán)平均計(jì)算價(jià)值在正,負(fù)彎矩區(qū)的一個(gè)連續(xù)的跨度。 (1)為破碎的換算截面的慣性矩;為總截面的質(zhì)心軸的慣性矩,但更正確的應(yīng)該是換算截面的未開裂的慣性矩;為在構(gòu)件的最大彎矩階段的計(jì)算撓度;為開裂力矩(=);為混凝土斷裂模數(shù);為從質(zhì)心的距離軸的毛截面的纖維在極端的張力。 ACI方法的修改包括在澳大利亞標(biāo)準(zhǔn)AS36002001(AS2001)解釋的收縮引起的張力可能會(huì)顯著的降低混凝土的開裂構(gòu)件這個(gè)事實(shí)。開裂的構(gòu)件由公式?jīng)Q定,是纖維在最大收縮引起的拉在未開裂截面應(yīng)力在極端的情況發(fā)生開裂(Gilbert 2003)。Eurocode 2(1994) 這種方法涉及到在特定的曲率計(jì)算交叉部分,然后結(jié)合取得的撓度。開裂后曲率K的計(jì)算為 (2)為分配系數(shù)占目前水平和打擊的程度,并給出 (3)為變形鋼筋=,光圓鋼筋=;為單一的,;在應(yīng)力加載造成的受拉鋼筋首先開裂,計(jì)算混凝土張力;是考慮鋼筋的加載應(yīng)力;為忽略應(yīng)力混凝土的曲率部分;曲率的未開裂換算截面。 在純彎曲的板,如果抗壓混凝土和鋼筋都是線性和彈性, 等于 ,結(jié)合公式1和2能得 (4)對(duì)于一個(gè)包含變形鋼筋受彎構(gòu)件在短期的加載,公式3和公式4可以重新安排,以提供下列替代表達(dá)式短期撓度[最近提出Bischoff(2005)] (5)這種做法,目前在英國(guó)已經(jīng)取代了Eurocode 2的方法,還涉及到在特定的截面曲率的計(jì)算,然后結(jié)合獲得的撓度。開裂后的曲率K計(jì)算假設(shè)(1)、平面為平截面;(2)、壓縮的鋼筋混凝土被認(rèn)為是線彈性;(3)、凝固的混凝土應(yīng)力分布是三角形的, MPa的瞬間強(qiáng)度鋼質(zhì)心。為了測(cè)試ACI 318,歐洲規(guī)范的適用性和BS 8110輕型鋼筋混凝土構(gòu)件的方法,測(cè)量的力矩與11簡(jiǎn)支的撓度反應(yīng)相對(duì),單鋼筋單向拉伸板含鋼量計(jì)算結(jié)果在范圍進(jìn)行比較,該板塊(指定S1至S3,S8的,到SS2的SS4型,和Z1到Z4)都是柱狀,矩形截面,850mm,并在一個(gè)有效深度載有縱向拉伸單層鋼筋d(Es=200000MPa和屈服應(yīng)力=500MPa)。每個(gè)板塊的詳細(xì)情況見表1,包括有關(guān)的幾何和材料特性。在每個(gè)板跨中撓度的