【文章內(nèi)容簡(jiǎn)介】
MM方法(飽和原子法、凍結(jié)軌道法) ? 簡(jiǎn)單勢(shì)能面方法 – 線性同步過(guò)渡( LST ) – 二次同步過(guò)渡( QST ) ? 完全的分子動(dòng)力學(xué) – 并行復(fù)制動(dòng)力學(xué)( parallel replica dynamics) – 超動(dòng)力學(xué)( hyperdynamics, metadynamics) – 溫度加速的動(dòng)力學(xué)( temperature accelerated dynamics ) – 快速蒙特卡羅( onthefly kineric Monte Carlo)方法 納米和材料科學(xué):輸運(yùn)性質(zhì)及其他 ? 輸運(yùn):非平衡態(tài)第一性原理模擬 ? 材料力學(xué):運(yùn)動(dòng)學(xué) Monte Carlo( KMC) 點(diǎn)陣氣體和元胞自動(dòng)機(jī) 連續(xù)方程的有限差分有限元求解 光譜學(xué):激發(fā)態(tài)和外場(chǎng) ? 系綜密度泛函理論 ? 考慮系統(tǒng)對(duì)稱性,用求和方法計(jì)算多重態(tài)激發(fā)能 ? 多體微擾理論, GW近似 BetheSalpeter方程 ? TDDFT,線性響應(yīng) 石墨烯體系的第一性原理研究 Graphene ? Introduction to graphene and graphene nanoribbon (GNR) ? GNR based spintronics ? Nearly free electron (NFE) states in gated GNR superlattice ? Cutting mechanism in graphene oxide (GO) Graphene: a monolayer of twodimensional carbon atoms 1985 1991 2022 Crystal structure of graphene Energy bands K or K’ Silicon out, Graphene in? R Van Noorden, Nature 442, 228(2022) What are Graphene nanoribbons (GNRs)? Unlimited Limited Zigzag GNRs Unlimited Limited Armchair GNRs Armchair GNRs Zigzag GNRs ? Armchair GNRs are PM. ? Zigzag GNRs favor AFM. Band Gaps in GNRs . Son et al.,Phys. Rev. Lett. 2022, 97, 216803 Halfmetallicity (HM) ? 100% spin polarization ? Applications: – Spin injection – Spin transport ? Some HM materials: – CrO2, NiMnSb, Fe3O4 ?Transition Metal Encapsulated Boron Nitride Nanotubes (New J. Phys., 2022) ?OneDimensional Transition MetalBenzene Sandwich Polymers(JACS, 2022) ? Zigzag GNRs (ZGNRs) turn to half metal (HM) under external transverse electric field. GNRs under Electric Field . Son et al., Nature 2022, 444, 347 LDA GGA B3LYP Effect of XC Functional? Effect of finite size? E. Rudberg et al.,Nano Lett. 2022, 7, 2211 8ZGNR Band Structure Crystal 03 package, B3LYP, Gaussian basis set … Kan, Yang et al., Appl. Phys. Lett. 2022, 91, 213116 ZGNRs with Different Widths L edge R edge Fermi Level Half Metal L edge R edge Charge Polarized Long range Coulomb interaction L edge R edge Spin Polarized Onsite Coulomb interaction U Charge and Spin Polarizations Graphene Ribbon BN Sheet Ribbon Break the Edge Symmetry by a Chemical Way 8C1BN πorbital hybridization between C and BN A Hybrid Nanoribbon Model Kan, Yang et al., J. Chem. Phys. 2022, 129, 084712 8C2BN 8C3BN Energy Gaps nC1BN Partial Charge Density Spin Density Charge and Spin Densities B CN N CB EF Coulomb term: long range Onsite U term: local Competition Between Charge and Spin Polarizations Functional Group Approach K