freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

外文翻譯--關(guān)于農(nóng)業(yè)廢料作為潛在的螯合吸附劑從水溶液中吸附重金屬離子的研究(編輯修改稿)

2025-06-26 07:54 本頁面
 

【文章內(nèi)容簡介】 –43. [24]Fahim, ., Barsoum, ., Eid, ., Khalil, ., 2020. Removal of Cr (III) from tannery wastewater using activated carbon from sugar industrial waste. J. Hazard. Mater. 136, 303–309. [25]Farajzadeh, ., Monji, ., 2020. Adsorption characteristics of wheat bran towards heavy metal cations. Sep. Purif. Technol. 38, 197–207. [26]Friberg, L., Elinder, ., 1985. Encyclopedia of Occupational Health,third ed. International Labor Organization, Geneva. Friedman, M., Waiss, ., 1972. Mercury uptake by selected agricultural products and byproducts. Environ. Sci. Technol. 6, 457–458. [27]Gajghate, ., Saxena, ., Vittal, M., 1991. Removal of lead from aqueous solution by activated carbon. Ind. J. Environ. Health 33, 374–379. [28]GardeaTorresdey, ., Tiemann, ., Armendariz, V., BessOberto, L.,Chianelli, ., Rios, J., Parsons, ., Gamez, G., 2020. Characterization of chromium (VI) binding and reduction to chromium (III) by the agricultural byproduct of Avena monida (oat) biomass. J. Hazard. Mater. B80, 175–188. [29]GardeaTorresdey, ., Gonzalez, ., Tiemann, ., Rodriguez, O.,Gamez, G., 1998. Phytofilteration of hazardous cadmium, chromium, lead, and zinc ions by biomass of Medicago sativa (alfalfa). J. Hazard. Mater. 57, 29–39. [30]GardeaTorresdey, ., Hejazi, M., Tiemann, ., Parsons, .,DuarteGardea, M., Henning, J., 2020. Use of Hop (Humulus lupulus)agricultural byproducts for the reduction of aqueous lead (II)environmental health hazards. J. Hazard. Mater. 91, 95–112. 10 [31]Garg, ., Kaur, ., Garg, ., Sud, D., 2020. Removal of hexavalent Cr from aqueous solutions by agricultural waste biomass. J. Hazard. Mater. 140, 60–68. [32]Garg, ., Kaur, ., Garg, ., Sud, D., in press. Removal of Ni (II)from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach. Biores. Technol. Garg, ., Gupta, R., Kumar, R., Gupta, ., 2020. Adsorption of chromium from aqueous solution on treated sawdust. Biores. Technol. 92, 79–81. [33]Gupta, ., Ali, I., 2020. Utilization of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater. Separation and Purification Technol. 18, 131–140. [34]Gupta, ., Ali, I., 2020. Removal of lead and chromium from wastewater using bagasse fly ash – a sugar industry waste. J. Colloid Interface Sci. 271, 321–328. [35]Gupta, ., Jain, ., Ali, I., Sharma, M., Saini, ., 2020. Removal of cadmium and nickel from wastewater using bagasse fly ash a sugar industry waste. Water Search 37, 4038–4044. [36]Gupta, ., Mohan, D., Sharma, S., Park, ., 1999. Removal of Cr VI from electroplating industry wastewater using bagasse fly ash. The Environmentalist 19, 129–136. [37]Hanif, ., Nadeem, R., Zafar, ., Akhtar, K., Bhatti, ., 2020. Nickel (II) biosorption by Casia fistula biomass. J. Hazard. Mater. B139, 345–355. [38]Hashem, A., AbdelHalim, ., ElTahlawy, ., Hebeish, A., of adsorption of Co (II) and Ni (II) ions onto peanut hulls though esterification using citric acid. Adsorp. Sci. Technol. 23,367–380. [39]Hashem, A., Akasha, ., Ghith, A., Hussein, ., 2020b. Adsorbent based on agricultural wastes for heavy metal and dye removal: Edu. Sci. Technol. 19, 69–86. [40]Hashem, A., AbouOkeil, A., ElShafie, A., ElSakhawy, M., of highcellulose pulp extracted from sunflower stalks for removal of Hg (II) from aqueous solution. . Technol. Eng. 45, 135–141. [41]Hashem, A., Aly, ., Aly, ., Hebeish, A., 2020b. Quaternization of cotton stalks and palm tree particles for removal of acid dye from aqueous solutions. . Technol. , 389–394. [42]Haung, C., Haung, ., 1996. Application of Aspergillus oryzae and Rhizopus oryzae for Cu (II) removal. Water Res. 9, 1985–1990. [43]Ho, ., Mckay, G., 1998. The kiics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can. J. Chem. Eng. 76,822–827. [44]Ho, Y., Huang, ., Haung, ., 2020. Equilibrium sorption isotherm for metal ions on tree fern. Process Biochem. 37, 1421–, T., Nakajima, A., Sakaguchi, T., 1981. Studies on the accumulation of heavy metal elements in biological systems, XIX:accumulation of uranium by microorganisms. Eur. J. Appl. . 12, 90–96. [45]Hosea, M., Greene, B., McPherson, R., Henzl, M., Alexander, ., Darnall, ., 1986. Accumulation of elemental gold on alga Chlorella vulgaris. Inorg. Chim. Acta 123, 161–165. [46]Iqbal, M., Saeed, A., Akhtar, N., 2020. Petiolar felt sheet of palm: a new 11 biosorbent for the removal of heavy metals from contaminated water. Biores. Technol. 81, 151–153. [47]Iqbal, M., Saeed, A., Akhtar, N., 2020. Removal and recovery of lead II from single and multiple (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). J. Hazard. Mater. 117, 65–73. [48]Johns, ., Marshall, ., Toles, ., 1998. Agricultural byproducts as granular activated carbons for adsorbing dissolved metals and organics. J. Chem. Technol. Biotechnol. 71, 131–140. [49]Kadirvelu, K., Namasivayam, C., Thamaraiselve, K., 2020. Removal of heavy metal from industrial wastewaters by adsorption on to activated carbon prepared from an agricultural solid waste. Biores. Technol. 76,63–65. [50]Kamble, ., Patil, ., 2020. Removal of heavy metals from waste water of thermal power station by waterhyacinths. Ind. J. Environ. Protect. 21, 623–626. [51]Kannan, N., Rengasamy, G., 2020. Comparison of Cd adsorption on various activated carbon. Water Air Soil Pollut. 163, 185–201. [52]Karthikeyan, T., Rajgopal, S., Miranda, ., 2020. Cr (VI) adsorption from aqueous solution by Hevea brasilinesis saw dust activated carbon. J. Hazard. Mater. 124, 192–199. [53]Karnitz Jr., O., Gurgel, ., Melo, ., Botaro, ., Melo, .,Gil, ., Gil, ., 2020. Adsorption of heavy metal ion fromaqueous single metal solution by chemical
點(diǎn)擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計(jì)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1