freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

數(shù)學教案-圓周角(編輯修改稿)

2025-04-13 23:13 本頁面
 

【文章內(nèi)容簡介】 方法和一種思想:
在證明中,運用了數(shù)學中的分類方法和“化歸”思想.分類時應作到不重不漏;化歸思想是將復雜的問題轉化成一系列的簡單問題或已證問題.
作業(yè) 教材P100中 習題A組6,7,8
第二、三課時 圓周角
教學目標:
掌握圓周角定理的三個推論,并會熟練運用這些知識進行有關的計算和證明;
進一步培養(yǎng)學生觀察、分析及解決問題的能力及邏輯推理能力;
培養(yǎng)添加輔助線的能力和思維的廣闊性.
教學重點:圓周角定理的三個推論的應用.
教學難點:三個推論的靈活應用以及輔助線的添加.
教學活動設計:

創(chuàng)設學習情境
問題1:畫一個圓,以B、C為弧的端點能畫多少個圓周角?它們有什么關系?

問題2:在⊙O中,若 =,能否得到∠C=∠G呢?根據(jù)什么?反過來,若土∠C=∠G ,是否得到 =呢?
分析、研究、交流、歸納
讓學生分析、研究,并充分交流.
注意:①問題解決,只要構造圓心角進行過渡即可;②若 =,則∠C=∠G;但反之不成立.
老師組織學生歸納:
推論1:同弧或等弧所對的圓周角相等;在同圓或等圓中,相等的圓周角所對的弧也相等.
重視:同弧說明是“同一個圓”; 等弧說明是“在同圓或等圓中”.
問題: “同弧”能否改成“同弦”呢?同弦所對的圓周角一定相等嗎?
問題3:一個特殊的圓弧——半圓,它所對的圓周角
點擊復制文檔內(nèi)容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1