【總結(jié)】北師大版九年級下冊數(shù)學的圖象的頂點坐標是;開口方向是;最值是.y=-2x2+3的圖象可由函數(shù)的圖象向平移個單位得到.y=-3x2的圖象向下平移2個單位可得
2025-06-17 12:45
【總結(jié)】北師大版九年級下冊數(shù)學、對稱軸和頂點坐標.(1)y=2(x-3)2-5(2)y=-(x+1)2(3)y=3(x+4)2+2移得到的?情境導入1.(1)開口:向上,對稱軸:直線x=3,頂點坐標(3,-5)(2)開口:向下,對稱軸:直線x=-1,頂點坐標(-1,0)(3)開口:向上,對稱軸:
2025-06-17 12:42
【總結(jié)】課題:二次函數(shù)的圖象與性質(zhì)(3)課型:新授課年級:九年級教學目標:1.能夠作出y=a(x-h)2和y=a(x-h)2+k的圖象,并能夠理解它與y=ax2的圖象的關(guān)系,理解a,h和k對二次函數(shù)圖象的影響.2.能正確說出y=a(x-h)2+k的圖象的開口方向、對稱軸和頂點坐標.3.能
2024-12-08 10:59
【總結(jié)】專題11二次函數(shù)圖象和性質(zhì)學校:___________姓名:___________班級:___________一、選擇題:(共4個小題)1.【2021雅安】在二次函數(shù)223yxx???中,當03x??時,y的最大值和最小值分別是()A.0,﹣4B.0,﹣3C.﹣3,﹣4D
2024-11-28 13:47
【總結(jié)】人生就像一級運算,加法是收獲,減法是給予。生活中只有合理地運用這兩種方法,才會活得自由、快樂。說出下列二次函數(shù)圖象的開口方向、對稱軸和頂點坐標:(1)y=-(x-5)2+3;(2)y=3(x+7)2-4;(3)y=-2(x-3)2-6;(4)y=5(x+9)2+10.你能確定二次函數(shù)y=2x2-8
2024-11-17 22:39
【總結(jié)】二次函數(shù)y=ax2+bx+c的圖象(二)一、選擇題1.拋物線y=x2―3x+2不經(jīng)過()A.第一象限B.第二象限D(zhuǎn).第四象限2.如圖2-60所示的是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(―3,0),對稱軸為x=―1.給出四個結(jié)論
2024-11-28 04:09
【總結(jié)】第二章二次函數(shù)二次函數(shù)的圖象與性質(zhì)(第4課時)函數(shù)表達式開口方向增減性對稱軸頂點坐標2axy?caxy??2??2hxay??a0,開口向下.)0(?xy直線軸)0,0()0(?xy直線軸),0(chx?直線)0,(h??khxay???2hx?直線)
2024-11-17 00:01
【總結(jié)】二次函數(shù)圖象性質(zhì)【教學內(nèi)容】二次函數(shù)圖象性質(zhì)(二)【教學目標】知識與技能會作出y=ax2和y=ax2+c的圖象,并能比較它們與y=x2的異同,理解a與c對二次函數(shù)圖象的影響.能說出y=ax2+c與y=ax2圖象的開口方向、對稱軸和頂點坐標過程與方法經(jīng)歷探索二次函數(shù)y=ax2和y=ax2+c的圖象的作法和性質(zhì)的過程
2024-11-19 15:45
【總結(jié)】二次函數(shù)的圖像及性質(zhì)y=ax2+c可由y=ax2的圖像上下平移而得到當c0時,向上平移c個單位;當c0時,向下平移︱c︱個單位。上一節(jié)我們從探索y=3x2的圖像出發(fā),研究了y=ax2及y=ax2+c的圖像和性質(zhì)問題1函數(shù)y=ax2+c和函數(shù)y=ax
2024-11-18 21:18
【總結(jié)】二次函數(shù)的圖象和性質(zhì)課時安排:(共4課時)?第一課時:函數(shù)的圖象和性質(zhì)?第二課時:函數(shù)的圖象和性質(zhì)?第三課時:函數(shù)的圖象和性質(zhì)?第四課時:二次函數(shù)的
2025-07-23 03:49
【總結(jié)】二次函數(shù)的圖象與性質(zhì)【教學內(nèi)容】二次函數(shù)的圖象與性質(zhì)知識與技能:經(jīng)歷探索二次函數(shù)y=x2的圖象的作法和歸納性質(zhì)的過程,獲得利用圖象研究二次函數(shù)性質(zhì)的經(jīng)驗.過程與方法:經(jīng)歷作圖與比較,初步建立二次函數(shù)表達式與圖象之間的聯(lián)系.情感、態(tài)度與價值觀;通過學習,由二次函數(shù)表達式與其圖象生成的過程領(lǐng)會數(shù)學的奧秘。激發(fā)鉆研數(shù)學的興趣?!?/span>
【總結(jié)】二次函數(shù)圖象性質(zhì)【教學內(nèi)容】二次函數(shù)圖象性質(zhì)【教學目標】知識與技能利用配方法將二次函數(shù)一般形式化為頂點式,進而求出對稱軸和頂點坐標。過程與方法經(jīng)歷二次函數(shù)一般形式轉(zhuǎn)化為頂點式的過程,明確配方法的重要性。熟練轉(zhuǎn)化并準確求出二次函數(shù)的對稱軸和頂點坐標。情感、態(tài)度與價值觀在探究二次函數(shù)的形式轉(zhuǎn)化過程中,體會通過探究得到發(fā)現(xiàn)的樂趣。
【總結(jié)】二次函數(shù)y=a(x–h)2的圖象和性質(zhì).當h0時,向右平移當h0時,向左平移y=ax2y=a(x–h)2y=-x2的圖象得到y(tǒng)=-x2-3的圖象。并說明后者圖象的頂點,對稱軸,增減性。y=2x2的圖象得到y(tǒng)=2(x-3)2的圖象。并說明后者圖象的頂點,對稱軸,增減性。Oxy12
2024-11-30 02:42
【總結(jié)】第二章二次函數(shù)二次函數(shù)的圖象與性質(zhì)知識點1二次函數(shù)y=ax2(a≠0)的圖象與性質(zhì)1.關(guān)于y=13x2,y=x2,y=3x2的圖象,下列說法中不正確的是(C)A.頂點相同B.對稱軸相同C.圖象形狀相同D.最低點相同(-1,y1
2025-06-18 00:26
【總結(jié)】第二章二次函數(shù)二次函數(shù)的圖象與性質(zhì)知識點1二次函數(shù)y=a(x-h)2(a≠0)的圖象與性質(zhì)y=-2(x-3)2的頂點坐標和對稱軸分別是(B)A.(-3,0),直線x=-3B.(3,0),直線x=3C.(0,-3),直線x=-3D.(0,3),直線x=-3
2025-06-18 00:39