freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

綏化市八年級數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸勾股定理選擇題精選及答案(4)(編輯修改稿)

2025-04-05 01:33 本頁面
 

【文章內(nèi)容簡介】 本題的難點(diǎn)是運(yùn)用勾股定理求直角三角形的直角邊,同時(shí)觀察、發(fā)現(xiàn)也是解答本題的關(guān)鍵.5.D解析:D【解析】【分析】先利用勾股定理計(jì)算BC的長度,然后陰影部分的面積=以AB為直徑的半圓面積+以BC為直徑的半圓面積+以AC為直徑的半圓面積.【詳解】解:在中∵,,∴,∴BC=3, ∴陰影部分的面積=以AB為直徑的半圓面積+以BC為直徑的半圓面積+以AC為直徑的半圓面積=.【點(diǎn)睛】.6.D解析:D【解析】【分析】利用勾股定理和正方形的面積公式,對公式進(jìn)行合適的變形即可判斷各個(gè)選項(xiàng)是否爭取.【詳解】A中,根據(jù)勾股定理等于大正方形邊長的平方,它就是正方形的面積,故正確;B中,根據(jù)小正方形的邊長是2它等于三角形較長的直角邊減較短的直角邊即可得到,正確;C中,根據(jù)四個(gè)直角三角形的面積和加上小正方形的面積即可得到,正確;D中,根據(jù)A可得,C可得,結(jié)合完全平方公式可以求得,錯(cuò)誤.故選D.【點(diǎn)睛】、B、C選項(xiàng)的等式中需理解等式的各個(gè)部分表示的幾何意義,對于D選項(xiàng)是由A、C選項(xiàng)聯(lián)立得出的.7.C解析:C【分析】在CB的反向延長線上取一點(diǎn)B’,使得BC=B’C,連接AB’,易證△AB’D≌△ABE,可得∠ABE=∠B’=60176。,因此點(diǎn)E的軌跡是一條直線,過點(diǎn)C作CH⊥BE,則點(diǎn)H即為使得BE最小時(shí)的E點(diǎn)的位置,然后根據(jù)直角三角形的性質(zhì)和勾股定理即可得出答案.【詳解】解:在CB的反向延長線上取一點(diǎn)B’,使得BC=B’C,連接AB’,∵∠ACB=90176。,∠ABC=60176。,∴△AB’B是等邊三角形,∴∠B’=∠B’AB=60176。,AB’=AB,∵△ADE是等邊三角形,∴∠DAE=60176。,AD=AE,∴∠B’AD+∠DAB=∠DAB+∠BAE,∴∠B’AD=∠BAE,∴△AB’D≌△ABE(SAS),∴∠ABE=∠B’=60176。,∴點(diǎn)E在直線BE上運(yùn)動(dòng),過點(diǎn)C作CH⊥BE于點(diǎn)H,則點(diǎn)H即為使得BE最小時(shí)的E點(diǎn)的位置,∠CBH=180176?!螦BC∠ABE=60176。,∴∠BCH=30176。,∴BH=BC=,∴CH==.即BE的最小值是.故選C.【點(diǎn)睛】本題是一道動(dòng)點(diǎn)問題,綜合考查了全等三角形的判定和性質(zhì),等邊三角形的判定和性質(zhì),直角三角形的性質(zhì)和勾股定理等知識(shí),將△ACB構(gòu)造成等邊三角形,通過全等證出∠ABC是定值,即點(diǎn)E的運(yùn)動(dòng)軌跡是直線是解決此題的關(guān)鍵.8.D解析:D【分析】根據(jù)折疊的性質(zhì)可得AD=A39。D,AE=A39。E,易得陰影部分圖形的周長為=AB+BC+AC,則可求得答案.【詳解】解:因?yàn)榈冗吶切蜛BC的邊長為1cm,所以AB=BC=AC=1cm,因?yàn)椤鰽DE沿直線DE折疊,點(diǎn)A落在點(diǎn)A39。處,所以AD=A39。D,AE=A39。E,所以陰影部分圖形的周長=BD+A39。D+BC+A39。E+EC=BD+AD+BC+AE+EC=AB+BC+AC=1+1+1=3(cm).故選:D.【點(diǎn)睛】此題考查了折疊的性質(zhì)與等邊三角形的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想與轉(zhuǎn)化思想的應(yīng)用以及折疊前后圖形的對應(yīng)關(guān)系.9.D解析:D【分析】先根據(jù)勾股定理求出梯子的長,進(jìn)而根據(jù)勾股定理可得出小巷的寬度.【詳解】解:如圖,由題意可得:AD2=+=,在Rt△ABC中,∵∠ABC=90176。,BC=,BC2+AB2=AC2,AD=AC,∴AB2+=,∴AB=177。2,∵AB>0,∴AB=2米,∴小巷的寬度為:+2=(米).故選:D.【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實(shí)際問題時(shí)勾股定理與方程的結(jié)合是解決實(shí)際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.10.D解析:D【分析】先用已知條件利用SAS的三角形全等的判定定理證出△EAB≌△CAM,之后利用全等三角形的性質(zhì)定理分別可得,,然后設(shè),繼而可分別求出,所以;易證Rt△ACB≌Rt△DCG(HL),從而得,然后代入所求數(shù)據(jù)即可得的值.【詳解】解:∵在△EAB和△CAM中 ,∴△EAB≌△CAM(SAS),∴,∴,∴,設(shè),則,,∴;∵ 在Rt△ACB和Rt△DCG中,Rt△ACB≌Rt△DCG(HL),∴?!啵蔬xD.【點(diǎn)睛】本題主要考查了勾股定理,三角形全等的判定定理和性質(zhì)定理等知識(shí).11.B解析:B【分析】結(jié)論①錯(cuò)誤,因?yàn)閳D中全等的三角形有3對;結(jié)論②正確,由全等三角形的性質(zhì)可以判斷;結(jié)論③錯(cuò)誤,利用全等三角形和等腰直角三角形的性質(zhì)可以判斷;結(jié)論④正確,利用全等三角形的性質(zhì)以及直角三角形的勾股定理進(jìn)行判斷.【詳解】連接CF,交DE于點(diǎn)P,如下圖所示結(jié)論①錯(cuò)誤,理由如下:圖中全等的三角形有3對,分別為△AFC≌△BFC,△AFD≌△CFE,△CFD≌△BFE.由等腰直角三角形的性質(zhì),可知FA=FC=FB,易得△AFC≌△BFC.∵FC⊥AB,F(xiàn)D⊥FE,∴∠AFD=∠CFE.∴△AFD≌△CFE(ASA).同理可證:△CFD≌△BFE.結(jié)論②正確,理由如下: ∵△AFD≌△CFE,∴S△AFD=S△CFE, ∴S四邊形CDFE=S△CFD+S△CFE=S△CFD+S△AFD=S△AFC=S△ABC,即△ABC的面積等于四邊形CDFE的面積的2倍.結(jié)論③錯(cuò)誤,理由如下: ∵△AFD≌△CFE,∴CE=AD,∴CD+CE=CD+AD=AC=FA.結(jié)論④正確,理由如下: ∵△AFD≌△CFE,∴AD=CE;∵△CFD≌△BFE,∴BE=CD.在Rt△CDE中,由勾股定理得:,∴ .故選B.【點(diǎn)睛】本題是幾何綜合題,考查了等腰直角三角形、全等三角形和勾股定理等重要幾何知識(shí)點(diǎn),綜合性比較強(qiáng).解決
點(diǎn)擊復(fù)制文檔內(nèi)容
合同協(xié)議相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1