freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

最新八年級(jí)數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸勾股定理選擇題復(fù)習(xí)題(含答案)(4)(編輯修改稿)

2025-04-02 03:23 本頁面
 

【文章內(nèi)容簡介】 開最短路徑問題,解題的關(guān)鍵是會(huì)將圓柱的側(cè)面展開,并利用勾股定理解答.5.B解析:B【分析】由直角三角形的勾股定理以及正方形的面積公式不難發(fā)現(xiàn):a的面積等于1號(hào)的面積加上2號(hào)的面積,b的面積等于2號(hào)的面積加上3號(hào)的面積,c的面積等于3號(hào)的面積加上4號(hào)的面積,據(jù)此可以求出三個(gè)的面積之和.【詳解】利用勾股定理可得: ,∴ 故選B【點(diǎn)睛】本題主要考查勾股定理的應(yīng)用,熟練掌握相關(guān)性質(zhì)定理是解題關(guān)鍵.6.A解析:A【分析】由已知條件可證△CFE≌△AFD,得到DF=EF,利用折疊知AE=AB=8cm,設(shè)AF=xcm,則DF=(8x)cm,在Rt△AFD中,利用勾股定理即可求得x的值.【詳解】∵四邊形ABCD是長方形,∴∠B=∠D=900,BC=AD,由翻折得AE=AB=8m,∠E=∠B=900,CE=BC=AD又∵∠CFE=∠AFD∴△CFE≌△AFD∴EF=DF設(shè)AF=xcm,則DF=(8x)cm在Rt△AFD中,AF2=DF2+AD2,AD=6cm,故選擇A.【點(diǎn)睛】此題是翻折問題,利用勾股定理求線段的長度.7.D解析:D【分析】根據(jù)已知設(shè)AC=x,BC=y(tǒng),在Rt△ACD和Rt△BCE中,根據(jù)勾股定理分別列等式,從而求得AC,BC的長,最后根據(jù)勾股定理即可求得AB的長.【詳解】如圖,在△ABC中,∠C=90176。,AD、BE為△ABC的兩條中線,且AD=2,BE=5,求AB的長.設(shè)AC=x,BC=y(tǒng),根據(jù)勾股定理得:在Rt△ACD中,x2+(y)2=(2)2,在Rt△BCE中,(x)2+y2=52,解之得,x=6,y=4,∴在Rt△ABC中, ,故選:D.【點(diǎn)睛】此題考查勾股定理的運(yùn)用,在直角三角形中,已知兩條邊長時(shí),可利用勾股定理求第三條邊的長度.8.C解析:C【分析】當(dāng)C′落在AB上,點(diǎn)B與E重合時(shí),AC39。長度的值最小,根據(jù)勾股定理得到AB=5cm,由折疊的性質(zhì)知,BC′=BC=3cm,于是得到結(jié)論.【詳解】解:當(dāng)C′落在AB上,點(diǎn)B與E重合時(shí),AC39。長度的值最小,∵∠C=90176。,AC=4cm,BC=3cm,∴AB=5cm,由折疊的性質(zhì)知,BC′=BC=3cm,∴AC′=ABBC′=2cm.故選:C.【點(diǎn)睛】本題考查了翻折變換(折疊問題),勾股定理,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.9.D解析:D【分析】先用已知條件利用SAS的三角形全等的判定定理證出△EAB≌△CAM,之后利用全等三角形的性質(zhì)定理分別可得,,然后設(shè),繼而可分別求出,所以;易證Rt△ACB≌Rt△DCG(HL),從而得,然后代入所求數(shù)據(jù)即可得的值.【詳解】解:∵在△EAB和△CAM中 ,∴△EAB≌△CAM(SAS),∴,∴,∴,設(shè),則,,∴;∵ 在Rt△ACB和Rt△DCG中,Rt△ACB≌Rt△DCG(HL),∴。∴.故選D.【點(diǎn)睛】本題主要考查了勾股定理,三角形全等的判定定理和性質(zhì)定理等知識(shí).10.D解析:D【分析】由等式可分別得到關(guān)于a、b、c的等式,從而分別計(jì)算得到a、b、c的值,再由的關(guān)系,可推導(dǎo)得到△ABC為直角三角形.【詳解】∵又∵ ∴∴ ∴ ∴△ABC為直角三角形故選:D.【點(diǎn)睛】本題考察了平方、二次根式、絕對(duì)值和勾股定理逆定理的知識(shí);求解的關(guān)鍵是熟練掌握二次根式、絕對(duì)值和勾股定理逆定理,從而完成求解.11.A解析:A【解析】試題解析:如圖,過D作AB垂線交于K,∵BD平分∠ABC,∴∠CBD=∠ABD∵∠C=∠DKB=90176。,∴CD=KD,在△BCD和△BKD中,∴△BCD≌△BKD,∴BC=BK=3∵E為AB中點(diǎn)∴BE=AE=,EK=,∴AK=AEEK=2,設(shè)DK=DC=x,AD=4x,∴AD2=AK2+DK2即(4x)2=22+x2解得:x=∴在Rt△DEK中,DE=.故選A.12.B解析:B【分析】過點(diǎn)D作DE⊥AB于點(diǎn)E,過點(diǎn)E作EQ⊥AC于點(diǎn)Q,EQ交AD于點(diǎn)P,連接CP,此時(shí)PC+PQ=EQ是最小值,根據(jù)勾股定理可求出AB的長度,再根據(jù)EQ⊥AC、∠ACB=90176。即可得出EQ∥BC,進(jìn)而可得出,代入數(shù)據(jù)即可得出EQ的長度,此題得解.【詳解】解:如圖所示,過點(diǎn)D作DE⊥AB于點(diǎn)E,過點(diǎn)E作EQ⊥AC于點(diǎn)Q,EQ交AD于點(diǎn)P,連接CP,此時(shí)PC+PQ=EQ是最小值,在Rt△ABC中,∠ACB=90176。,AC=9,BC=12,∴,∵AD是∠BAC的平分線,∴∠CAD=∠EAD,在△ACD和△AED中,∴△ACD≌△AED(AAS),∴AE=AC=9.∵EQ⊥AC,∠ACB=90176。,∴EQ∥BC,∴,.故選B.【點(diǎn)睛】本題考查了勾股定理、軸對(duì)稱中的最短路線問題以及平行線的性質(zhì),找出點(diǎn)C的對(duì)稱點(diǎn)E,及通過點(diǎn)E找到點(diǎn)P、Q的位置是解題的關(guān)鍵.13.D解析:D【分析】根據(jù)直角三角形的性質(zhì)求出BC,根據(jù)勾股定理計(jì)算,得到答案.【詳解】解:∵∠C=90176。,∠A=30176。,∴BC
點(diǎn)擊復(fù)制文檔內(nèi)容
化學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1