freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

寧德市八年級(jí)數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸勾股定理選擇題練習(xí)題(附答案)(1)(編輯修改稿)

2025-04-02 00:31 本頁面
 

【文章內(nèi)容簡介】 A,∴BE=AB=AC,∵的周長為6,∴DE+CD+CE=AC+CE=BC=6,∵∴,∴,∴的面積=,故選:D.【點(diǎn)睛】此題考查角平分線定理的運(yùn)用,勾股定理求邊長,在利用角平分線定理時(shí)必須是兩個(gè)垂直一個(gè)平分同時(shí)運(yùn)用,得到到角兩邊的距離相等的結(jié)論.8.D解析:D【分析】先根據(jù)等腰三角形的性質(zhì)得出是線段垂直平分線,再根據(jù)垂直平分線的性質(zhì)、兩點(diǎn)之間線段最短得出最小值為,最后根據(jù)垂線段最短、直角三角形的性質(zhì)得出BE的最小值即可得.【詳解】如圖,作,交AC于點(diǎn)E,∵AD平分∠BAC,∴∠BAD=∠CAD,是線段垂直平分線(等腰三角形的三線合一)由兩點(diǎn)之間線段最短得:當(dāng)點(diǎn)共線時(shí),最小,最小值為點(diǎn)都是動(dòng)點(diǎn)隨點(diǎn)的運(yùn)動(dòng)而變化由垂線段最短得:當(dāng)時(shí),取得最小值在中,即的最小值為故選:D.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì)、垂直平分線的性質(zhì)、兩點(diǎn)之間線段最短等知識(shí)點(diǎn),利用兩點(diǎn)之間線段最短和垂線段最短確認(rèn)的最小值是解題關(guān)鍵.9.C解析:C【分析】存在2種情況,△ABC是銳角三角形和鈍角三角形時(shí),高AD分別在△ABC的內(nèi)部和外部【詳解】情況一:如下圖,△ABC是銳角三角形∵AD是高,∴AD⊥BC∵AB=15,AD=12∴在Rt△ABD中,BD=9∵AC=13,AD=12∴在Rt△ACD中,DC=5∴△ABC的周長為:15+12+9+5=42情況二:如下圖,△ABC是鈍角三角形在Rt△ADC中,AD=12,AC=13,∴DC=5在Rt△ABD中,AD=12,AB=15,∴DB=9∴BC=4∴△ABC的周長為:15+13+4=32故選:C【點(diǎn)睛】本題考查勾股定理,解題關(guān)鍵是多解,注意當(dāng)幾何題型題干未提供圖形時(shí),往往存在多解情況.10.D解析:D【分析】先用已知條件利用SAS的三角形全等的判定定理證出△EAB≌△CAM,之后利用全等三角形的性質(zhì)定理分別可得,,然后設(shè),繼而可分別求出,所以;易證Rt△ACB≌Rt△DCG(HL),從而得,然后代入所求數(shù)據(jù)即可得的值.【詳解】解:∵在△EAB和△CAM中 ,∴△EAB≌△CAM(SAS),∴,∴,∴,設(shè),則,,∴;∵ 在Rt△ACB和Rt△DCG中,Rt△ACB≌Rt△DCG(HL),∴。∴.故選D.【點(diǎn)睛】本題主要考查了勾股定理,三角形全等的判定定理和性質(zhì)定理等知識(shí).11.B解析:B【分析】①由AB=AC,AD=AE,利用等式的性質(zhì)得到夾角相等,利用SAS得出三角形ABD與三角形ACE全等,由全等三角形的對(duì)應(yīng)邊相等得到BD=CE;②由三角形ABD與三角形ACE全等,得到一對(duì)角相等,再利用等腰直角三角形的性質(zhì)及等量代換得到BD垂直于CE;③由等腰直角三角形的性質(zhì)得到∠ABD+∠DBC=45176。,等量代換得到∠ACE+∠DBC=45176。;④由BD垂直于CE,在直角三角形BDE中,利用勾股定理列出關(guān)系式,等量代換即可作出判斷.【詳解】解:如圖,① ∵∠BAC=∠DAE=90176。,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴BD=CE,故①正確;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45176。,∴∠ACE+∠DBC=45176。,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=45176。+45176。=90176。,∴∠BDC=90176。,∴BD⊥CE,故②正確;③∵△ABC為等腰直角三角形,∴∠ABC=∠ACB=45176。,∴∠ABD+∠DBC=45176。,∵∠ABD=∠ACE∴∠ACE+∠DBC=45176。,故③錯(cuò)誤;④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得BE2=BD2+DE2,∵△ADE為等腰直角三角形,∴AE=AD,∴DE2=2AD2,∴BE2=BD2+DE2=BD2+2AD2,在Rt△BDC中,而BC2=2AB2,∴BD22AB2,∴故④錯(cuò)誤,綜上,正確的個(gè)數(shù)為2個(gè).故選:B.【點(diǎn)睛】此題考查了全等三角形的判定與性質(zhì),勾股定理,以及等腰直角三角形的性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵.12.C解析:C【解析】分析:通過切線的性質(zhì)表示出EC的長度,用相似三角形的性質(zhì)表示出OE的長度,由已知條件表示出OC的長度即可通過勾股定理求出結(jié)果.詳解:如圖:連接BC,并連接OD交BC于點(diǎn)E:∵DP⊥BP,AC為直徑;∴∠DPB=∠PBC=90176。.∴PD∥BC,且PD為⊙O的切線.∴∠PDE=90176。=∠DEB,∴四邊形PDEB為矩形,∴AB∥OE,且O為AC中點(diǎn),AB=6.∴PD=BE=EC.∴OE=AB=3.設(shè)PA=x,則OD=DEOE=6+x3=3+x=OC,EC=PD=6x..在Rt△OEC中:,
點(diǎn)擊復(fù)制文檔內(nèi)容
研究報(bào)告相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1