freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學二輪-平行四邊形-專項培優(yōu)-易錯-難題(編輯修改稿)

2025-04-01 22:03 本頁面
 

【文章內(nèi)容簡介】 76。,∴∠FIH=30176。,∴IH=FH.(3)結(jié)論:EG2=AG2+CE2.理由:如圖3中,將△ADG繞點D逆時針旋轉(zhuǎn)90176。得到△DCM,∵∠FAD+∠DEF=90176。,∴AFED四點共圓,∴∠EDF=∠DAE=45176。,∠ADC=90176。,∴∠ADF+∠EDC=45176。,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45176。=∠EDG,在△DEM和△DEG中, ,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45176。,AG=CM,∴∠ECM=90176。∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【點睛】考查四邊形綜合題、矩形的性質(zhì)、正方形的性質(zhì)、菱形的判定和性質(zhì),等邊三角形的判定和性質(zhì),勾股定理等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造全等三角形,學會轉(zhuǎn)化的思想思考問題.7.如圖1,已知正方形ABCD的邊CD在正方形DEFG的邊DE上,連接AE,GC.(1)試猜想AE與GC有怎樣的關(guān)系(直接寫出結(jié)論即可);(2)將正方形DEFG繞點D按順時針方向旋轉(zhuǎn),使點E落在BC邊上,如圖2,連接AE和CG.你認為(1)中的結(jié)論是否還成立?若成立,給出證明;若不成立,請說明理由.(3)在(2)中,若E是BC的中點,且BC=2,則C,F(xiàn)兩點間的距離為   .【答案】(1) AE=CG,AE⊥GC;(2)成立,證明見解析; (3) .【解析】【分析】(1)觀察圖形,AE、CG的位置關(guān)系可能是垂直,下面著手證明.由于四邊形ABCD、DEFG都是正方形,易證得△ADE≌△CDG,則∠1=∠2,由于∠∠3互余,所以∠∠3互余,由此可得AE⊥GC.(2)題(1)的結(jié)論仍然成立,參照(1)題的解題方法,可證△ADE≌△CDG,得∠5=∠4,由于∠∠7互余,而∠∠6互余,那么∠6=∠7;由圖知∠AEB=∠CEH=90176。﹣∠6,即∠7+∠CEH=90176。,由此得證.(3)如圖3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,則四邊形CMGH是矩形,可得CM=GH,CH=GM.想辦法求出CH,HF,再利用勾股定理即可解決問題.【詳解】(1)AE=CG,AE⊥GC;證明:延長GC交AE于點H,在正方形ABCD與正方形DEFG中,AD=DC,∠ADE=∠CDG=90176。,DE=DG,∴△ADE≌△CDG(SAS),∴AE,CG,∠1=∠2∵∠2+∠3=90176。,∴∠1+∠3=90176。,∴∠AHG=180176。﹣(∠1+∠3)=180176。﹣90176。=90176。,∴AE⊥GC.(2)答:成立;證明:延長AE和GC相交于點H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90176。,∴∠1=∠2=90176。﹣∠3;∴△ADE≌△CDG(SAS),∴AE=CG,∠5=∠4;又∵∠5+∠6=90176。,∠4+∠7=180176。﹣∠DCE=180176。﹣90176。=90176。,∴∠6=∠7,又∵∠6+∠AEB=90176。,∠AEB=∠CEH,∴∠CEH+∠7=90176。,∴∠EHC=90176。,∴AE⊥GC.(3)如圖3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,則四邊形CMGH是矩形,可得CM=GH,CH=GM.∵BE=CE=1,AB=CD=2,∴AE=DE=CG═DG=FG=,∵DE=DG,∠DCE=∠GND,∠EDC=∠DGN,∴△DCE≌△GND(AAS),∴GCD=2,∵S△DCG=?CD?NG=?DG?CM,∴22=?CM,∴CM=GH=,∴MG=CH==,∴FH=FG﹣FG=,∴CF===.故答案為.【點睛】本題屬于四邊形綜合題,考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),解直角三角形等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考壓軸題.8.如圖所示,矩形ABCD中,點E在CB的延長線上,使CE=AC,連接AE,點F是AE的中點,連接BF、DF,求證:BF⊥DF.【答案】見解析.【解析】【分析】延長BF,交DA的延長線于點M,連接BD,進而求證△AFM≌△EFB,得AM=BE,F(xiàn)B=FM,即可求得BC+BE=AD+AM,進而求得BD=BM,根據(jù)等腰三角形三線合一的性質(zhì)即可求證BF⊥DF.【詳解】延長BF,交DA的延長線于點M,連接BD.∵四邊形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,F(xiàn)B=FM.∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD.∵CE=AC,∴AC=CE= BD =DM.∵FB=FM,∴BF⊥DF.【點睛】本題考查了矩形的性質(zhì),全等三角形的判定和對應邊相等的性質(zhì),等腰三角形三線合一的性質(zhì),本題中求證DB=DM是解題的關(guān)鍵.9.已知,點是的角平分線上的任意一點,現(xiàn)有一個直角繞點旋轉(zhuǎn),兩直角邊,分別與直線,相交于點,點.(1)如圖1,若,猜想線段,之間的數(shù)量關(guān)系,并說明理由.(2)如圖2,若點在射線上,且與不垂直,則(1)中的數(shù)量關(guān)系是否仍成立?如成立,請說明理由;如不成立,請寫出線段,之間的數(shù)量關(guān)系,并加以證明.(3)如圖3,若點在射線的反向延長線上,且,請直接寫出線段的長度.【答案】(1)詳見解析;(2)詳見解析;(3)【解析】【分析】(1)先證四邊形為矩形,再證矩形為正方形,由正方形性質(zhì)可得;(2)過點作于點,于點,證四邊形為正方形,再證,可得;(3)根據(jù),可得.【詳解】解:(1)∵,,∴四邊形為矩形.∵是的角平分線,∴,∴,∴矩形為正方形,∴,.∴.(2)如圖,過點作于點,于點,∵平分,∴四邊形為正方形,由(1)得:,在和中,∴,∴,∴.(3),∴.∵,∴,∴,∴,的長度為.【點睛】考核知識點:矩形,.10.如圖1,在正方形ABCD中,AD=6,點P是對角線BD上任意一點,連接PA,PC過點P作PE⊥PC交直線AB于E.(1) 求證:PC=PE。(2) 延長AP交直線CD于點F.①如圖2,若點F是CD的中點,求△APE的面積;②若ΔAPE的面積是,則DF的長為 (3) 如圖3,點E在邊AB上,連接EC交BD于點M,作點E關(guān)于BD的對稱點Q,連接PQ,MQ,過點P作PN∥CD交EC于
點擊復制文檔內(nèi)容
職業(yè)教育相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1