freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學(xué)備考之二次函數(shù)壓軸突破訓(xùn)練∶培優(yōu)-易錯(cuò)-難題篇及詳細(xì)答案(編輯修改稿)

2025-03-31 23:08 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 在,一是中點(diǎn)在已知直線上,二是兩點(diǎn)連線和已知直線垂直.6.如圖,拋物線與x軸相交于兩點(diǎn),(點(diǎn)A在B點(diǎn)左側(cè))與y軸交于點(diǎn)C.(Ⅰ)求兩點(diǎn)坐標(biāo).(Ⅱ)連結(jié),若點(diǎn)P在第一象限的拋物線上,P的橫坐標(biāo)為t,并求t為何值時(shí),S最大.(Ⅲ)在(Ⅱ)的基礎(chǔ)上,若點(diǎn)分別為拋物線及其對(duì)稱軸上的點(diǎn),點(diǎn)G的橫坐標(biāo)為m,點(diǎn)H的縱坐標(biāo)為n,且使得以四點(diǎn)構(gòu)成的四邊形為平行四邊形,求滿足條件的的值.【答案】(Ⅰ);(Ⅱ),當(dāng)時(shí),;(Ⅲ)滿足條件的點(diǎn)的值為:,或,或【解析】【分析】(Ⅰ)令y=0,建立方程求解即可得出結(jié)論;(Ⅱ)設(shè)出點(diǎn)P的坐標(biāo),利用S=S△AOC+S梯形OCPQ+S△PQB,即可得出結(jié)論;(Ⅲ)分三種情況,利用平行四邊形的性質(zhì)對(duì)角線互相平分和中點(diǎn)坐標(biāo)公式建立方程組即可得出結(jié)論.【詳解】解:(Ⅰ)拋物線,令,則,解得:或,∴(Ⅱ)由拋物線,令,∴,∴,如圖1,點(diǎn)P作軸于Q,∵P的橫坐標(biāo)為t,∴設(shè),∴∴,∴當(dāng)時(shí),;(Ⅲ)由(Ⅱ)知,∴,∵拋物線的對(duì)稱軸為,∴設(shè)以四點(diǎn)構(gòu)成的四邊形為平行四邊形,①當(dāng)和為對(duì)角線時(shí),∴,∴,②當(dāng)和是對(duì)角線時(shí),∴,∴,③和為對(duì)角線時(shí),∴,∴,即:滿足條件的點(diǎn)的值為:,或,或【點(diǎn)睛】此題是二次函數(shù)綜合題,主要考查了坐標(biāo)軸上點(diǎn)的特點(diǎn),三角形的面積公式,梯形的面積公式,平行四邊形的性質(zhì),中點(diǎn)坐標(biāo)公式,用方程的思想解決問題是解本題的關(guān)鍵.7.如圖所示,已知平面直角坐標(biāo)系xOy,拋物線過(guò)點(diǎn)A(4,0)、B(1,3)(1)求該拋物線的表達(dá)式,并寫出該拋物線的對(duì)稱軸和頂點(diǎn)坐標(biāo);(2)記該拋物線的對(duì)稱軸為直線l,設(shè)拋物線上的點(diǎn)P(m,n)在第四象限,點(diǎn)P關(guān)于直線l的對(duì)稱點(diǎn)為E,點(diǎn)E關(guān)于y軸的對(duì)稱點(diǎn)為F,若四邊形OAPF的面積為20,求m、n的值.【答案】(1)y=,對(duì)稱軸為:x=2,頂點(diǎn)坐標(biāo)為:(2,4)(2)m、n的值分別為 5,5【解析】(1) 將點(diǎn)A(4,0)、B(1,3) 的坐標(biāo)分別代入y=-x2+bx+c,得:4b+c16=0,b+c1=3 ,解得:b=4 , c=0.所以拋物線的表達(dá)式為:.y=,所以 拋物線的對(duì)稱軸為:x=2,頂點(diǎn)坐標(biāo)為:(2,4).(2) 由題可知,E、F點(diǎn)坐標(biāo)分別為(4m,n),(m4,n).三角形POF的面積為:1/24|n|= 2|n|,三角形AOP的面積為:1/24|n|= 2|n|,四邊形OAPF的面積= 三角形POF的面積+三角形AOP的面積=20,所以 4|n|=20, n=5.(因?yàn)辄c(diǎn)P(m,n)在第四象限,所以n0)又n=+4m,所以4m5=0,m=5.(因?yàn)辄c(diǎn)P(m,n)在第四象限,所以m0)故所求m、n的值分別為 5,5.8.如圖1,在矩形ABCD中,DB=6,AD=3,在Rt△PEF中,∠PEF=90176。,EF=3,PF=6,△PEF(點(diǎn)F和點(diǎn)A重合)的邊EF和矩形的邊AB在同一直線上.現(xiàn)將Rt△PEF從A以每秒1個(gè)單位的速度向射線AB方向勻速平移,當(dāng)點(diǎn)F與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,解答下列問題:(1)如圖1,連接PD,填空:PE=   ,∠PFD=   度,四邊形PEAD的面積是  ??;(2)如圖2,當(dāng)PF經(jīng)過(guò)點(diǎn)D時(shí),求△PEF運(yùn)動(dòng)時(shí)間t的值;(3)在運(yùn)動(dòng)的過(guò)程中,設(shè)△PEF與△ABD重疊部分面積為S,請(qǐng)直接寫出S與t的函數(shù)關(guān)系式及相應(yīng)的t的取值范圍.【答案】(1)300,;(2);(3)見解析.【解析】分析:(1)根據(jù)銳角三角形函數(shù)可求出角的度數(shù),然后根據(jù)勾股定理求出PE的長(zhǎng),再根據(jù)梯形的面積公式求解.(2)當(dāng)PF經(jīng)過(guò)點(diǎn)D時(shí),PE∥DA,由EF=3,PF=6,可得∠EPD=∠ADF=30176。,用三角函數(shù)計(jì)算可得AF=t=;(3)根據(jù)題意,分三種情況:①當(dāng)0≤t<時(shí),②≤t<3時(shí),③3≤t≤6時(shí),根據(jù)三角形、梯形的面積的求法,求出S與t的函數(shù)關(guān)系式即可.詳解:(1)∵在Rt△PEF中,∠PEF=90176。,EF=3,PF=6∴sin∠P= ∴∠P=30176。∵PE∥AD∴∠PAD=300,根據(jù)勾股定理可得PE=3,所以S四邊形PEAD=(3+3)3=; (2)當(dāng)PF經(jīng)過(guò)點(diǎn)D時(shí),PE∥DA,由EF=3,PF=6,得∠EPF=∠ADF=30176。,在Rt△ADF中,由AD=3,得AF=,所以t= ; (3)分三種情況討論: ①當(dāng)0≤t<時(shí), PF交AD于Q,∵AF=t,AQ=t,∴S=tt=;②當(dāng)≤t<3時(shí),PF交BD于K,作KH⊥AB于H,∵AF=t,∴BF=3t,S△ABD=,∵∠FBK=∠FKB,∴FB=FK=3t,KH=KFsin600=,∴S=S△ABD﹣S△FBK =③當(dāng)3≤t≤3時(shí),PE與BD交O,PF交BD于K,∵AF=t,∴AE=t3,BF=3t,BE=3t+3,OE=BEtan300=,∴S=.點(diǎn)睛:此題主要考查了幾何變換綜合題,用到的知識(shí)點(diǎn)有直角三角形的性質(zhì),三角函數(shù)值,三角形的面積,圖形的平移等,考查了分析推理能力,分類討論思想,數(shù)形結(jié)合思想,要熟練掌握,比較困難.9.已知:如圖,拋物線y=ax2+bx+3與坐標(biāo)軸分別交于點(diǎn)A,B(﹣3,0),C(1,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).(1)求拋物線解析式;(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積最大?(3)過(guò)點(diǎn)P作x軸的垂線,交線段AB于點(diǎn)D,再過(guò)點(diǎn)P作PE∥x軸交拋物線于點(diǎn)E,連接DE,請(qǐng)問是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.【答案】(1)y=﹣x2﹣2x+3 (2)(﹣,) (3)存在,P(﹣2,3)或P(,)【解析】【分析】(1)用待定系數(shù)法求解;(2)過(guò)點(diǎn)P作PH⊥x軸于點(diǎn)H,交AB于點(diǎn)F,直線AB解析式為y=x+3,設(shè)P(t,﹣t2﹣2t+3)(﹣3<t<0),則F(t,t+3),則PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t,根據(jù)S△PAB=S△PAF+S△PBF寫出解析式,再求函數(shù)最大值;(3)設(shè)P(t,﹣t2﹣2t+3)(﹣3<t<0),則D(t,t+3),PD=﹣t2﹣3t,由拋物線y=﹣x2﹣2x+3=﹣(x+1)2+4,由對(duì)稱軸為直線x=﹣1,PE∥x軸交拋物線于點(diǎn)E,得yE=y(tǒng)P,即點(diǎn)E、P關(guān)于對(duì)稱軸對(duì)稱,所以=﹣1,得xE=﹣2﹣xP=﹣2﹣t,故PE=|xE﹣xP|=|﹣2﹣2t|,由△PDE為等腰直角三角形,∠DPE=90176。,得PD=PE,再分情況討論:①當(dāng)﹣3<t≤﹣1時(shí),PE=﹣2﹣2t;②當(dāng)﹣1<t<0時(shí),PE=2+2t【詳解】解:(1)∵拋物線y=ax2+bx+3過(guò)點(diǎn)B(﹣3,0),C(1,0)∴ 解得:∴拋物線解析式為y=﹣x2﹣2x+3(2)過(guò)點(diǎn)P作PH⊥x軸于點(diǎn)H,
點(diǎn)擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計(jì)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1