freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學知識點過關(guān)培優(yōu)-易錯-難題訓練∶二次函數(shù)附答案(編輯修改稿)

2025-03-31 07:35 本頁面
 

【文章內(nèi)容簡介】 即可得到對應D的坐標;(3)先證明∠CEF=90176。得到△ECF為等腰直角三角形,作PH⊥y軸于H,PG∥y軸交BC于G,如圖2,△EPG、△PHF都為等腰直角三角形,則PE=PG,PF=PH,設P(t,t2﹣4t+3)(1<t<3),則G(t,﹣t+3),接著利用t表示PF、PE,這樣PE+EF=2PE+PF=﹣t2+4t,然后利用二次函數(shù)的性質(zhì)解決問題.試題解析:解:(1)把B(3,0),C(0,3)代入y=x2+bx+c得:,解得:,∴拋物線y=x2+bx+c的表達式為y=x2﹣4x+3;(2)如圖1,拋物線的對稱軸為直線x=﹣=2,設D(2,y),B(3,0),C(0,3),∴BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,當△BCD是以BC為直角邊,BD為斜邊的直角三角形時,BC2+DC2=BD2,即18+4+(y﹣3)2=1+y2,解得:y=5,此時D點坐標為(2,5);當△BCD是以BC為直角邊,CD為斜邊的直角三角形時,BC2+DB2=DC2,即4+(y﹣3)2=1+y2+18,解得:y=﹣1,此時D點坐標為(2,﹣1);(3)易得BC的解析式為y=﹣x+3.∵直線y=x+m與直線y=x平行,∴直線y=﹣x+3與直線y=x+m垂直,∴∠CEF=90176。,∴△ECF為等腰直角三角形,作PH⊥y軸于H,PG∥y軸交BC于G,如圖2,△EPG、△PHF都為等腰直角三角形,PE=PG,PF=PH,設P(t,t2﹣4t+3)(1<t<3),則G(t,﹣t+3),∴PF=PH=t,PG=﹣t+3﹣(t2﹣4t+3)=﹣t2+3t,∴PE=PG=﹣t2+t,∴PE+EF=PE+PE+PF=2PE+PF=﹣t2+3t+t=﹣t2+4t=﹣(t﹣2)2+4,當t=2時,PE+EF的最大值為4.點睛:本題考查了二次函數(shù)的綜合題.熟練掌握等腰直角三角形的性質(zhì)、二次函數(shù)圖象上點的坐標特征和二次函數(shù)的性質(zhì);會利用待定系數(shù)法求二次函數(shù)解析式;理解坐標與圖形性質(zhì),記住兩點間的距離公式.7.如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(3,0)兩點,且與y軸交于點C,點D是拋物線的頂點,拋物線對稱軸DE交x軸于點E,連接BD.(1)求經(jīng)過A,B,C三點的拋物線的函數(shù)表達式;(2)點P是線段BD上一點,當PE=PC時,求點P的坐標.【答案】(1)y=﹣x2+2x+3;(2)點P的坐標為(2,2).【解析】【分析】(1)利用待定系數(shù)法求出過A,B,C三點的拋物線的函數(shù)表達式;(2)連接PC、PE,利用公式求出頂點D的坐標,利用待定系數(shù)法求出直線BD的解析式,設出點P的坐標為(x,﹣2x+6),利用勾股定理表示出PC2和PE2,根據(jù)題意列出方程,解方程求出x的值,計算求出點P的坐標.【詳解】解:(1)∵拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(3,0)兩點,∴,解得,∴所求的拋物線的函數(shù)表達式為y=﹣x2+2x+3;(2)如圖,連接PC,PE.拋物線的對稱軸為x==1.當x=1時,y=4,∴點D的坐標為(1,4).設直線BD的解析式為y=kx+b,則, 解得.∴直線BD的解析式為:y=2x+6,設點P的坐標為(x,﹣2x+6),又C(0,3),E(1,0),則PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,則y=﹣22+6=2,∴點P的坐標為(2,2).【點睛】本題考查的是二次函數(shù)的圖象和性質(zhì)、待定系數(shù)法求函數(shù)解析式,掌握二次函數(shù)的圖象和性質(zhì)、靈活運用待定系數(shù)法是解題的關(guān)鍵.8.如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣3,0),B(1,0),C(0,3)三點.(1)求拋物線的函數(shù)表達式;(2)如圖1,P為拋物線上在第二象限內(nèi)的一點,若△PAC面積為3,求點P的坐標;(3)如圖2,D為拋物線的頂點,在線段AD上是否存在點M,使得以M,A,O為頂點的三角形與△ABC相似?若存在,求點M的坐標;若不存在,請說明理由.【答案】(1)y=﹣x2﹣2x+3;(2)點P的坐標為(﹣1,4)或(﹣2,3);(3)存在,(,)或(,),見解析.【解析】【分析】(1)利用待定系數(shù)法,然后將A、B、C的坐標代入解析式即可求得二次函數(shù)的解析式;(2))過P點作PQ垂直x軸,交AC于Q,把△APC分成兩個△APQ與△CPQ,把PQ作為兩個三角形的底,通過點A,C的橫坐標表示出兩個三角形的高即可求得三角形的面積.(3)通過三角形函數(shù)計算可得∠DAO=∠ACB,使得以M,A,O為頂點的三角形與△ABC相似,則有兩種情況,∠AOM=∠CAB=45176。,即OM為y=x,若∠AOM=∠CBA,則OM為y=3x+3,然后由直線解析式可求OM與AD的交點M.【詳解】(1)把A(﹣3,0),B(1,0),C(0,3)代入拋物線解析式y(tǒng)=ax2+bx+c得,解得,所以拋物線的函數(shù)表達式為y=﹣x2﹣2x+3.(2)如解(2)圖1,過P點作PQ平行y軸,交AC于Q點,∵A(﹣3,0),C(0,3),∴直線AC解析式為y=x+3,設P點坐標為(x,﹣x2﹣2x+3.),則Q點坐標為(x,x+3),∴PQ=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x.∴S△PAC=,∴,解得:x1=﹣1,x2=﹣2.當x=﹣1時,P點坐標為(﹣1,4),當x=﹣2時,P點坐標為(﹣2,3),綜上所述:若△PAC面積為3,點P的坐標為(﹣1,4)或(﹣2,3),(3)如解(3)圖1,過D點作DF垂直x軸于F點,過A點作AE垂直BC于E點,∵D為拋物線y=﹣x2﹣2x+3的頂點,∴D點坐標為(﹣1,4),又∵A(﹣3,0),∴直線AC為y=2x+4,AF=2,DF=4,tan∠PAB=2,∵B(1,0),C(0,3)∴tan∠ABC=3,BC=,sin∠ABC=,直線BC解析式為y=﹣3x+3.∵AC=4,∴AE=AC?sin∠ABC==,BE=,∴CE=,∴tan∠ACB=,∴tan∠ACB=tan∠PAB=2,∴∠ACB=∠PAB,∴使得以M,A,O為頂點的三角形與△ABC相似,則有兩種情況,如解(3)圖2Ⅰ.當∠AOM=∠CAB=45176。時,△ABC∽△OMA,即OM為y=﹣x,設OM與AD的交點M(x,y)依題意得:,解得,即M點為(,).Ⅱ.若∠AOM=∠CBA,即OM∥BC,∵直線BC解析式為y=﹣3x+3.∴直線OM為y=﹣3x,設直線OM與AD的交點M(x,y).則依題意得:,解得,即M點為(,),綜上所述:存在使得以M,A,O為頂點的三角形與△ABC相似的點M,其坐標為(,)或(,).【點睛】本題結(jié)合三角形的性質(zhì)考查二次函數(shù)的綜合應用,函數(shù)和幾何圖形的綜合題目,要會利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來,利用
點擊復制文檔內(nèi)容
教學教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1