freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx全國各地備戰(zhàn)中考數(shù)學(xué)分類:平行四邊形綜合題匯編(編輯修改稿)

2025-03-30 22:22 本頁面
 

【文章內(nèi)容簡介】 ③1中,當(dāng)點O在線段AH上,點F在線段CD上,點E在線段BC上時.∵OB=2,∴OH==1,∴OC=3+1=4,由(1)可知:CO=CE+CF,∵OC=4,CF=1,∴CE=3,∴BE=63=3.如圖③2中,當(dāng)點O在線段AH上,點F在線段DC的延長線上,點E在線段BC上時.由(2)可知:CECF=OC,∴CE=4+1=5,∴BE=1.如圖③3中,當(dāng)點O在線段CH上,點F在線段CD上,點E在線段BC上時.同法可證:OC=CE+CF,∵OC=CHOH=31=2,CF=1,∴CE=1,∴BE=61=5.如圖③4中,當(dāng)點O在線段CH上,點F在線段DC的延長線上,點E在線段BC上時.同法可知:CECF=OC,∴CE=2+1=3,∴BE=3,綜上所述,滿足條件的BE的值為3或5或1.【點睛】本題屬于四邊形綜合題,考查了全等三角形的判定和性質(zhì),等邊三角形的性質(zhì),解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,學(xué)會用分類討論的思想思考問題,屬于中考壓軸題.8.現(xiàn)有一張矩形紙片ABCD(如圖),其中AB=4cm,BC=6cm,點E是BC的中點.將紙片沿直線AE折疊,點B落在四邊形AECD內(nèi),記為點B′,過E作EF垂直B′C,交B′C于F.(1)求AE、EF的位置關(guān)系;(2)求線段B′C的長,并求△B′EC的面積.【答案】(1)見解析;(2)S△B′EC=.【解析】【分析】(1)由折線法及點E是BC的中點,可證得△B39。EC是等腰三角形,再有條件證明∠AEF=90176。即可得到AE⊥EF;(2)連接BB′,通過折疊,可知∠EBB′=∠EB′B,由E是BC的中點,可得EB′=EC,∠ECB′=∠EB′C,從而可證△BB′C為直角三角形,在Rt△AOB和Rt△BOE中,可將OB,BB′的長求出,在Rt△BB′C中,根據(jù)勾股定理可將B′C的值求出.【詳解】(1)由折線法及點E是BC的中點,∴EB=EB′=EC,∠AEB=∠AEB′,∴△B39。EC是等腰三角形,又∵EF⊥B′C∴EF為∠B39。EC的角平分線,即∠B′EF=∠FEC,∴∠AEF=180176。﹣(∠AEB+∠CEF)=90176。,即∠AEF=90176。,即AE⊥EF;(2)連接BB39。交AE于點O,由折線法及點E是BC的中點,∴EB=EB′=EC,∴∠EBB′=∠EB′B,∠ECB′=∠EB′C;又∵△BB39。C三內(nèi)角之和為180176。,∴∠BB39。C=90176。;∵點B′是點B關(guān)于直線AE的對稱點,∴AE垂直平分BB′;在Rt△AOB和Rt△BOE中,BO2=AB2﹣AO2=BE2﹣(AE﹣AO)2將AB=4cm,BE=3cm,AE=5cm,∴AO= cm,∴BO==cm,∴BB′=2BO=cm,∴在Rt△BB39。C中,B′C==cm,由題意可知四邊形OEFB′是矩形,∴EF=OB′=,∴S△B′EC=.【點睛】考查圖形的折疊變化及三角形的內(nèi)角和定理勾股定理的和矩形的性質(zhì)綜合運用.關(guān)鍵是要理解折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,只是位置變化.9.(1)問題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點M為BC邊上異于B、C的一點,以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為   ;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點M為BC邊上異于B、C的一點,以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點M為BC邊上異于B、C的一點,以AM為邊作正方形AMEF,點N為正方形AMEF的中點,連接CN,若BC=10,CN=,試求EF的長.【答案】(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解析】分析:(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60176。從而得到∠BAC∠CAM=∠MAN∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質(zhì)得到,利用等腰三角形的性質(zhì)得到∠BAC=∠MAN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;(3)如圖3,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45176。,∠MAN=45176。,根據(jù)相似三角形的性質(zhì)得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.詳解:(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60176。,∴∠BAM=∠CAN,在△ABM與△ACN中, ,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60176。,∵∠ANC+∠ACN+∠CAN=∠ANC+60176。+∠CAN=180176。,∴∠ANC+∠MAN+∠BAM=∠ANC+60176。+∠CAN=∠BAN+∠ANC=180176。,∴CN∥AB; (2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180176。﹣∠ABC),∵AM=MN∴∠MAN=(180176。﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45176。,∠MAN=45176。,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45176。=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.點睛:本題是四邊形綜合題目,考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)定理和判定定理、相似三角形的性質(zhì)定理和判定定理等知識;本題綜合性強,有一定難度,證明三角形全等和三角形相似是解決問題的關(guān)鍵.10.如圖,在矩形ABCD中,點E在邊CD上,將該矩形沿AE折疊,使點D落在邊BC上的點F處,過點F作FG∥CD,交AE于點G,連接DG.(1)求證:四邊形DEFG為菱形;(2)若CD=8,CF=4,求的值.【答案】(1)證明見試題解析;(2).【解析】試題分析:(1)由折疊的性質(zhì),可以得到DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,再證明 FG=FE,即可得到四邊形DEFG為菱形;(2)在Rt△EFC中,用勾股定理列方程即可CD、CE,從而求出的值.試題解析:(1)由折疊的性質(zhì)可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四邊形DEFG為菱形;(2)設(shè)DE=x,根據(jù)折疊的性質(zhì),EF=DE=x,EC=8﹣x,在Rt△EFC中,即,解得:x=5,CE=8﹣x=3,∴=.
點擊復(fù)制文檔內(nèi)容
外語相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1