freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

20xx高等代數(shù)習題及答案1)精選(編輯修改稿)

2025-03-26 03:07 本頁面
 

【文章內容簡介】 1%)那么由p(x)|f(x)g(x)知p(x)|f(x)或p(x)|g(x)。(1%)不妨設p(x)|f(x),再由p(x)|(f(x)?g(x))得p(x)|g(x)。故p(x)|1矛盾。(2%)充分性. 由(f(x)?g(x),f(x)g(x))?1知存在多項式u(x),v(x)使u(x)(f(x)?g(x))?v(x)f(x)g(x)?1,(2%)從而u(x)f(x)?g(x)(u(x)?v(x)f(x))?1,(2%) 故(f(x),g(x))?1。(1%)三、(16分)a,b取何值時,線性方程組ax1?bx2?2x3?1???ax1?(2b?1)x2?3x3?1 ?ax?bx?(b?3)x?2b?123?1有唯一解、沒有解、有無窮解?在有解情況下求其解。解:b21??ab21??a????a2b?131?0b?110?????a??bb?32b?1??00b?12b?2???(5%)01??a2?b????0b?110??00b?12b?2???當a(b?1)?0時,有唯一解:x1?25?b?22b?2(4%) , x2?, x3?;a(b?1)b+1b?1當b?1時,有無窮解:x3?0,x2?1?ax1,x1任意取值;當a?0,b?5時,有無窮解:x1?k,x2??,x3?,k任意取值;(3%)當b??1或a?0 且 b??1且 b?5時,無解。(4%)四、(10分)設a1,a2,...,an都是非零實數(shù),證明?a111..111?a21..111..1...1...1.....111..?a1a2...an(1??i?1n1?a3...11) ai...11?an1a1證: 對n用數(shù)學歸納法。當n=1時 , D1?1?a1?a1(1?), 結論成立(2%)。假設n1時成立。那么n時?a1111?a21..111...11...11?a111..111?a21..111..1...1...1.....000 ..Dn=1..11?a3...11?.........1...111?a3...1...1an=a1a2...an?1?anDn?1 (4%)?n?11?現(xiàn)由歸納假設Dn?1?a1a2...an?1?1???有?i?1ai??n?11?Dn=a1a2...an?1?anDn?1=a1a2...an?1?a1a2...an?1an?1????i?1ai?n?1?=a1a2...an?1an?1???,(3%)?i?1ai?故由歸納原理結論成立。(1%)五、(10分)證明f(x)?x4?1在有理數(shù)域上不可約。 證: 令x?y?1得(1%)g(y)?f(x)?y4?4y3?6y2?4y?2。(3%)取素數(shù)p=2滿足2|2,2|4,2|6,2|4,且2不整除1, 4不整除2. (2%)再據(jù)艾茵斯坦茵判別法知g(y)?y?4y?6y?4y?2在有理數(shù)域上不可約,(2%)432從而f(x)?x4?1在有理數(shù)域上不可約(2%)六、(9分)令A為數(shù)域F上秩為r的m?n矩陣,r?0。求證:存在秩 為r的m?r矩陣F和秩為r的r?n矩陣G, 使得A?FG。證: A為數(shù)域F上秩為r的m?n矩陣,r?0, 那么存在m?m可逆陣使P和n?n可逆陣Q?IA?P?r?0進而令0??Q.(3%) 0??I?F?P?r?,G??Ir?0?就得A?FG(2%) .0?Q(4%)七、(10分)設A, B是n?n矩陣, 且A?B,A?B可逆。求證2n?2n矩陣P??證:|P|??AB??1?可逆, 且求P。?BA?ABA?BBA?B??BAB?AA0B?|A?B||A?B|?0, A?B故P可逆 (5%)令P?1???X?TY??有 S??AB??X????BA??TY??In???S??00??.(1%) In?1??1?1??X?(A?B)?(A?B)????AX?BT?In2??AY?BS?01???1?1?(A?B)?(A?B)進而?(1%),解得?Y??(3%)??
點擊復制文檔內容
范文總結相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1