【摘要】一、復(fù)習(xí)用空間向量解決立體幾何問題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點(diǎn)、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(2)通過向量運(yùn)算,研究點(diǎn)、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問題;(3)把向量的運(yùn)算結(jié)果“翻譯”成相應(yīng)的幾何意義。(化為向量問題)(進(jìn)行向量運(yùn)算)(
2024-11-09 03:30
【摘要】1思考1思考2引入思考3課外思考P競(jìng)賽輔導(dǎo)─向量法2利用向量處理幾何問題,最重要的是要先在幾何圖形中尋找具有向量因素的特征,如共線、平行、垂直、線段的倍分等,然后引進(jìn)向量通過向量的運(yùn)算,來達(dá)到解(證)幾何題的目的.下面就這一方法在解題中的應(yīng)用做一些思考.競(jìng)賽輔
2024-11-09 09:21
【摘要】αlPAB直線與直線所成角的范圍:結(jié)論:|cos,|??ab?||一、線線角:??ab??????,ab????????,設(shè)直線的方向向量為,的方向向量為CAaBbDaabb]2,0[?回顧線線夾角與兩線方向向量間的關(guān)系
2025-08-05 09:41