【正文】
(4)為三角級數(shù),稱級數(shù)(4)的部分和 (5)為三角多項式,后面我們將看到,將常數(shù)項記為的形式,是為了使有統(tǒng)一的表達式。3微分定理3 若在上連續(xù),又絕對可積,則有 (6)其中 。它既能簡化計算,又具有明確的物理意義,因而在許多領(lǐng)域被廣泛的應用,如電力工程、通信和控制領(lǐng)域以及其他許多數(shù)學、物理和工程技術(shù)領(lǐng)域。2 參考文獻[1] 劉元駿. 大學數(shù)學基礎教程(下冊). 北京:科學出版社2009.[2] 王濤,方剛. 數(shù)學分析(下冊). 北京:科學出版社2006.[3] 林益,劉國鈞. 復變函數(shù)與積分變換. 武漢:華中科技大學出版社2008.[4] 劉向麗. :機械工業(yè)出版社 2009致 謝首先我要衷心的感謝我的導師張玲老師。對于周期為的周期函數(shù),它可展成指數(shù)形式的傅里葉級數(shù):對上式取傅里葉變換,并考慮不是時間的函數(shù),由此可得:是周期函數(shù)的傅里葉變換譜,上式表明,周期函數(shù)的頻譜由無窮多個脈沖組成,這些脈沖位于頻率處,每個脈沖的脈沖強度為需指出的是,雖然從頻譜的圖形上,這里的與是及其相似的,但兩者含義不同。如果函數(shù)以及它的前(1)階導數(shù)滿足狄利克雷條件,而且處處連續(xù),那么隨著趨向于無窮大,的傅里葉級數(shù)的系數(shù)和至少應與一樣快趨向于零。在實際中這些條件通常是滿足的,目前還不知道傅里葉級數(shù)收斂的必要且充分的條件是什么。所以式()的三角函數(shù)系的周期為。積分變換起源于19世紀的運算危機,英國著名的無線電工程師海維賽德(O .Heaviside)在用它求解電工學、物理學領(lǐng)域中的線性微分方程的過程中逐步形成一種所謂的符號法,后來符號法又演變成今天的積分變化法。 關(guān)鍵詞:傅里葉級數(shù);傅里葉變換;周期性 Fourier series And Fourier TransformsAbstract: Fourier series is made mathematical analysis to cyclical phenomenon, and Fourier transform can be seen as the limit form of Fourier series, it also can be regarded as a mathematical analysis of cycle phenomenon. In addition, the Fourier transform is a kind of very important in the field of signal processing algorithms.Fourier transform is a method of signal analysis, it can analyze signal ponent, also can use these ingredients synthetic signal. Many waveform can be used as a signal of ingredients, such as cosine wave, square wave, sawtooth wave, etc., the Fourier transform as a signal of position. In electronics disciplines, physics, signal processing disciplines etc many fields have a wide range of applications.Fourier series is for periodic function, Fourier transform for is a periodic function, they are in essence a kind of papers said the signal into a plex signal superposition, similar features.Key words: Fourier series。如下形式的函數(shù)系: 1, ,…,… ()稱為基本三角函數(shù)系。事實上,也正是如此,可代入數(shù)字驗證。一般而言,一個