freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高考卷,全國統(tǒng)一高考數(shù)學(xué)試卷理科新課標(biāo)含解析版,12屆最終定稿(留存版)

2025-06-14 21:17上一頁面

下一頁面
  

【正文】 c=0( 1)求 A; ( 2)若 a=2,△ ABC 的面積為; 求 b, c. 18.( 12 分)某花店每天以每枝 5 元的價(jià)格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝 10 元的價(jià)格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.( 1)若花店一天購進(jìn) 16 枝玫瑰花,求當(dāng)天的利潤 y(單位:元)關(guān)于當(dāng)天需求量 n(單位:枝, n∈ N)的函數(shù)解析式.( 2)花店記錄了 100天玫瑰花的日需求量(單位:枝), 整理得如表: 日需求量 n14151617181920頻數(shù) 10202116151310以 100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.( i)若花店一天購進(jìn) 16 枝玫瑰花, X 表示當(dāng)天的利潤(單位:元),求 X 的分布列、數(shù)學(xué)期望及方差; ( ii)若花店計(jì)劃一天購進(jìn) 16 枝或 17 枝玫瑰花,你認(rèn)為應(yīng)購進(jìn)16 枝還是 17 枝?請說明理由. 19.( 12 分)如圖,直三棱柱 ABC﹣ A1B1C1中, AC=BC=AA1, D是棱 AA1的中點(diǎn), DC1⊥ BD( 1)證明: DC1⊥ BC; ( 2)求二面角 A1﹣ BD﹣ C1 的大?。?20.( 12 分)設(shè)拋物線 C: x2=2py( p> 0)的焦點(diǎn)為 F,準(zhǔn)線為 l, A∈ C,已知以 F 為圓心, FA 為半徑的圓 F 交 l 于 B, D兩點(diǎn); ( 1)若∠ BFD=90176。同理:∠ A1DC1=45176?!?A=60176。且,則 = 3 .【考點(diǎn)】 9O:平面向量數(shù)量積的性質(zhì)及其運(yùn)算; 9S:數(shù)量積表示兩個(gè)向量的夾角.菁優(yōu)網(wǎng)版權(quán)所有【專題】 11:計(jì)算題; 16:壓軸題.【分析】由已 知可得, =,代入 |2|====可求【解答】解:∵, =1∴ =∴ |2|====解得故答案為: 3【點(diǎn)評】本題主要考查了向量的數(shù)量積定義的應(yīng)用,向量的數(shù)量積性質(zhì) ||=是求解向量的模常用的方法 14.( 5 分)設(shè) x, y滿足約束條件:; 則 z=x﹣ 2y 的取值范圍為.【考點(diǎn)】 7C:簡單線性規(guī)劃.菁優(yōu)網(wǎng)版權(quán)所有【專題】 11:計(jì)算題.【分析】先作出不等式組表示的平面區(qū)域,由 z=x﹣ 2y 可得, y=,則﹣表示直線 x﹣ 2y﹣ z=0 在 y軸上的截距,截距越大, z 越小,結(jié)合函數(shù)的圖形可求 z 的最大與最小值,從而可求 z的范圍【解答】解 :作出不等式組表示的平面區(qū)域由 z=x﹣ 2y 可得,y=,則﹣表示直線 x﹣ 2y﹣ z=0 在 y 軸上的截距,截距越大, z 越小結(jié)合函數(shù)的圖形可知,當(dāng)直線 x﹣ 2y﹣ z=0 平移到 B 時(shí),截距最大, z 最??; 當(dāng)直線 x﹣ 2y﹣ z=0 平移到 A 時(shí),截距最小, z 最大由可得 B( 1,2),由可得 A( 3, 0)∴ Zmax=3, Zmin=﹣ 3則 z=x﹣ 2y∈ [﹣ 3, 3]故答案為: [﹣ 3, 3]【點(diǎn)評】平面區(qū)域的范圍問題是線性規(guī)劃問題中一類重要題型,在解題時(shí),關(guān)鍵是正確地畫出平面區(qū)域,分析表達(dá)式的幾何意義,然后結(jié)合數(shù)形結(jié)合的思想,分析圖形, 找出滿足條件的點(diǎn)的坐標(biāo),即可求出答案. 15.( 5 分)某個(gè)部件由三個(gè)元件按下圖方式連接而成,元件 1 或元件 2 正常工作,且元件 3 正常工作,則部件正常工作,設(shè)三個(gè)電子元件的使用壽命(單位:小時(shí))均服從正態(tài)分布 N( 1000, 502),且各個(gè)元件能否正常相互獨(dú)立,那么該部件的使用壽命超過 1000 小時(shí)的概率為.【考點(diǎn)】 CP:正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義.菁優(yōu)網(wǎng)版權(quán)所有【專題】 11:計(jì)算題; 16:壓軸題.【分析】先根據(jù)正態(tài)分布的意義,知三個(gè)電子元件的使用壽命超過 1000小時(shí)的概率為,而所求事件“該部件的 使用壽命超過 1000 小時(shí)”當(dāng)且僅當(dāng)“超過 1000小時(shí)時(shí),元件 元件 2 至少有一個(gè)正?!焙汀俺^ 1000 小時(shí)時(shí),元件 3正?!蓖瑫r(shí)發(fā)生,由于其為獨(dú)立事件,故分別求其概率再相乘即可【解答】解:三個(gè)電子元件的使用壽命均服從正態(tài)分布 N( 1000, 502)得:三個(gè)電子元件的使用壽命超過 1000 小時(shí)的概率為設(shè) A={超過 1000 小時(shí)時(shí),元件 元件 2至少有一個(gè)正常 }, B={超過 1000小時(shí)時(shí),元件 3正常 }C={該部件的使用壽命超過 1000 小時(shí) }則 P( A) =, P( B) =P( C) =P( AB) =P( A) P( B)= =故答案為【點(diǎn) 評】本題主要考查了正態(tài)分布的意義,獨(dú)立事件同時(shí)發(fā)生的概率運(yùn)算,對立事件的概率運(yùn)算等基礎(chǔ)知識(shí),屬基礎(chǔ)題 16.( 5 分)數(shù)列 {an}滿足 an+1+(﹣ 1) nan=2n﹣ 1,則 {an}的前 60 項(xiàng)和為 1830 .【考點(diǎn)】 8E:數(shù)列的求和; 8H:數(shù)列遞推式.菁優(yōu)網(wǎng)版權(quán)所有【專題】 11:計(jì)算題; 35:轉(zhuǎn)化思想; 4M:構(gòu)造法; 54:等差數(shù)列與等比數(shù)列.【分析】由題意可得 a2﹣ a1=1, a3+a2=3,a4﹣ a3=5, a5+a4=7, a6﹣ a5=9, a7+a6=11,? a50﹣ a49=97,變形可得 a3+a1=2, a4+a2=8, a7+a5=2, a8+a6=24, a9+a7=2, a12+a10=40,a13+a15=2, a16+a14=56,?利用數(shù)列的結(jié)構(gòu)特征,求出 {an}的前 60項(xiàng)和【解答】解:∵ an+1+(﹣ 1) nan=2n﹣ 1,故有 a2﹣ a1=1, a3+a2=3,a4﹣ a3=5, a5+a4=7, a6﹣ a5=9, a7+a6=11,? a50﹣ a49=97.從而可得 a3+a1=2, a4+a2=8, a7+a5=2, a8+a6=24, a9+a11=2, a12+a10=40,a13+a11=2, a16+a14=56,?從第一項(xiàng)開始,依次取 2 個(gè)相鄰奇數(shù)項(xiàng)的和都等于 2,從第二項(xiàng)開始,依次取 2個(gè)相鄰偶數(shù)項(xiàng)的和構(gòu)成以 8為首項(xiàng),以 16 為公差的等差數(shù)列. {an}的前 60 項(xiàng)和為 15 2+( 15 8+)=1830【點(diǎn)評】本題考查數(shù)列遞推式,訓(xùn)練了利用構(gòu)造等差數(shù)列求數(shù)列的前 n 項(xiàng)和,屬中檔題. 三、解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟. 17.( 12 分)已知 a, b, c 分別為△ ABC三個(gè)內(nèi)角 A,B, C 的對邊, acosC+asinC﹣ b﹣ c=0( 1)求 A; ( 2)若 a=2,△ ABC 的面積為; 求 b, c.【考點(diǎn)】 HP:正弦定理.菁優(yōu)網(wǎng)版權(quán)所有【專題】 33:函數(shù)思想; 4R:轉(zhuǎn)化法; 58:解三角形.【分析】( 1)已知等式利用正弦定理化簡,整理后得到 sin( A﹣ 30176。) =.∴ A﹣ 30176。的等腰三角形,∴ |PF2|=|F2F1|∵ P 為直線x=上一點(diǎn)∴∴故選: C.【點(diǎn)評】本題考查橢圓的幾何性質(zhì),解題的關(guān)鍵是確定幾何量之間的關(guān)系,屬于基礎(chǔ)題. 5.( 5分)已知 {an}為等比數(shù)列, a4+a7=2, a5a6=﹣ 8,則 a1+a10=() A. 7B. 5C.﹣ 5D.﹣ 7【考點(diǎn)】 87:等比數(shù)列的性質(zhì); 88:等比數(shù)列 的通項(xiàng)公式.菁優(yōu)網(wǎng)版權(quán)所有【專題】 11:計(jì)算題.【分析】由 a4+a7=2,及 a5a6=a4a7=﹣ 8可求 a4, a7,進(jìn)而可求公比 q,代入等比數(shù)列的通項(xiàng)可求 a1, a10,即可【解答】解:∵ a4+a7=2,由等比數(shù)列的性質(zhì)可得, a5a6=a4a7=﹣ 8∴ a4=4, a7=﹣ 2 或 a4=﹣ 2, a7=4當(dāng) a4=4, a7=﹣ 2 時(shí),∴ a1=﹣ 8, a10=1,∴ a1+a10=﹣ 7 當(dāng) a4=﹣ 2,a7=4 時(shí), q3=﹣ 2,則 a10=﹣ 8, a1=1∴ a1+a10=﹣ 7 綜上可得, a1+a10=﹣ 7故選: D.【點(diǎn)評】本題主要考查了等比 數(shù)列的性質(zhì)及通項(xiàng)公式的應(yīng)用,考查了基本運(yùn)算的能力. 6.( 5 分)如果執(zhí)行右邊的程序框圖,輸入正整數(shù) N( N≥ 2)和實(shí)數(shù) a1, a2,?, an,輸出 A, B,則() A. A+B為 a1, a2,?, an 的和 B.為 a1, a2,?, an 的算術(shù)平均數(shù) C. A 和B 分別是 a1, a2,?, an 中最大的數(shù)和最小的數(shù) D. A和 B 分別是 a1,a2,?, an 中最小的數(shù)和最大的數(shù)【考點(diǎn)】 E7:循環(huán)結(jié)構(gòu).菁優(yōu)網(wǎng)版權(quán)所有【專題】 5K:算法和程序框圖.【分析】分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是求出a1, a2,? , an 中最大的數(shù)和最小的數(shù).【解答】解:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知,該程序的作用是:求出 a1, a2,?, an 中最大的數(shù)和最小的數(shù)其中 A為 a1, a2,?,an 中最大的數(shù), B為 a1, a2,?, an 中最小的數(shù)故選: C.【點(diǎn)評】本題主要考查了循環(huán)結(jié)構(gòu),解題的關(guān)鍵是建立數(shù)學(xué)模型,根據(jù)每一步分析的結(jié)果,選擇恰當(dāng)?shù)臄?shù)學(xué)模型,屬于中檔題. 7.( 5分)如圖,網(wǎng)格紙上小正方形的邊長為 1,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為() A. 6B. 9C. 12D. 18【考點(diǎn)】 L!:由三視圖求面 積、體積.菁優(yōu)網(wǎng)版權(quán)所有【專題】 11:計(jì)算題.【分析】通過三視圖判斷幾何體的特征,利用三視圖的數(shù)據(jù)求出幾何體的體積即可.【解答】解:該幾何體是三棱錐,底面是俯視圖,三棱錐的高為 3; 底面三角形斜邊長為 6,高為 3 的等腰直角三角形,此幾何體的體積為 V= 6 3 3=9.故選: B.【點(diǎn)評】本題考查三視圖與幾何體的關(guān)系,考查幾何體的體積的求法,考查計(jì)算能力. 8.( 5 分)等軸雙曲線 C 的中心在原點(diǎn),焦點(diǎn)在 x 軸上, C 與拋物線 y2=16x的準(zhǔn)線交于點(diǎn) A 和點(diǎn) B, |AB|=4,則 C 的實(shí)軸長為() A. B. C. 4D. 8【 考點(diǎn)】 KI:圓錐曲線的綜合.菁優(yōu)網(wǎng)版權(quán)所有【專題】 11:計(jì)算題; 16:壓軸題.【分析】設(shè)等軸雙曲線 C: x2﹣ y2=a2( a> 0), y2=16x的準(zhǔn)線 l: x=﹣ 4,由 C 與拋物線 y2=16x 的準(zhǔn)線交于 A, B 兩點(diǎn),能求出 C 的實(shí)軸長.【解答】解:設(shè)等軸雙曲線 C: x2﹣ y2=a2( a> 0), y2=16x的準(zhǔn)線 l: x=﹣ 4,∵ C 與拋物線 y2=16x 的準(zhǔn)線 l: x=﹣ 4交于 A, B 兩點(diǎn),∴ A(﹣ 4, 2), B(﹣ 4,﹣ 2),將 A 點(diǎn)坐標(biāo)代入雙曲線方程得 =4,∴ a=2, 2a=4.故選: C.【點(diǎn)評】本題考查雙曲線的性質(zhì)和 應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化. 9.( 5 分)已知ω> 0,函數(shù) f( x) =sin(ω x+)在區(qū)間[,π ]上單調(diào)遞減,則實(shí)數(shù)ω的取值范圍是() A. B. C. D.( 0, 2]【考點(diǎn)】 HK:由 y=Asin(ω x+φ)的部分圖象確定其解析式.菁優(yōu)網(wǎng)版權(quán)所有【專題】 11:計(jì)算題; 16:壓軸題.【分析】法一:通過特殊值ω =ω =1,驗(yàn)證三角函數(shù)的角的范圍,排除選項(xiàng),得到結(jié)果.法二:可以通過角的范圍,直接推導(dǎo)ω的范圍即可.【解答】解:法一:令:不合題意排除( D)合題意排除( B)( C)法二:,得:.故選: A.【點(diǎn)評】本題考查三角函數(shù)的單調(diào)性的應(yīng)用,函數(shù)的解析式的求法,考查計(jì)算能力. 10.( 5分)已知函數(shù) f( x) =,則 y=f( x)的圖象大致為() A. B. C. D.【考點(diǎn)】4N:對數(shù)函數(shù)的圖象與性質(zhì); 4T:對數(shù)函數(shù)圖象與性質(zhì)的綜合應(yīng)用.菁優(yōu)網(wǎng)版權(quán)所有【專題】11:計(jì)算題. 【分析】考慮函數(shù) f( x)的分母的函數(shù)值恒小于零,即可排除 A, C,由 f( x)的定義域能排除 D,這一性質(zhì)可利用導(dǎo)數(shù)加以證明【解答】解:設(shè)則 g′( x) =∴ g( x)在(﹣ 1, 0)上為增函數(shù),在( 0, +∞)上為減函數(shù)∴ g( x)< g( 0) =0∴ f( x) =< 0 得: x> 0 或﹣ 1< x< 0 均有 f( x)< 0 排除 A, C,又 f( x) =中,能排除 D.故選: B.【點(diǎn)評】本題主要考查了函數(shù)解析式與函數(shù)圖象間的關(guān)系,利用導(dǎo)數(shù)研究函數(shù)性質(zhì)的應(yīng)用,排除法解圖象選擇題,屬基礎(chǔ)題 11.( 5分)已知三棱錐 S﹣ ABC 的所有頂點(diǎn)都在球 O 的表面上,△ ABC 是邊長為 1 的正三角形, SC 為球 O的直徑,且 SC=2,則此三棱錐的體積為()A. B. C. D.【考點(diǎn)】 LF:棱柱、棱錐、棱臺(tái)的體積.菁優(yōu)網(wǎng)版權(quán)所有【專題】 11:計(jì)算題; 5F:空間位置關(guān)系與距離.【分析】根據(jù)題意作出圖形,利用截面圓的性質(zhì)即可求出 OO1,進(jìn)而求出底面 ABC 上的高 SD,即可計(jì)算出三棱錐的體積.【解答】解:根據(jù)題意作出圖形: 設(shè)球心為 O,過 ABC 三點(diǎn)的小圓的圓心為 O1,則 OO1⊥平面 ABC,延長 CO1交球于點(diǎn) D,則 SD⊥平面 ABC.∵ CO1==,∴ OO1==,∴高 SD=2OO1=,∵△ ABC 是邊長為 1 的正三角形,∴ S△ ABC=,∴ V 三棱錐 S﹣ ABC==.故選: C.【點(diǎn)評】本題考查棱錐的體積,考查球內(nèi)接多面體,解題的關(guān)鍵是確定點(diǎn) S 到面 ABC 的距離. 12.(
點(diǎn)擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計(jì)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1