【正文】
在洞壁表面上方程系數(shù)的光滑化 .另 外,帶相變的溫度場的算法與文獻 [3]相同 . 2. 3 熱參數(shù)及初邊值的確定 熱參數(shù)的確定方法 : 用 p= 計算出海拔高度為 H 的隧道現(xiàn)場的大氣 壓強,再由 GTP?? 計算出現(xiàn)場空氣密度 ? ,其中 T為現(xiàn)場大氣的年平均絕對溫重慶交通大學(xué)土木工程專 業(yè)(隧道與城市軌道交通工程方向)畢業(yè)設(shè)計外文翻譯 16 度, G為空氣的氣體常數(shù) .記定壓比熱為 PC ,導(dǎo)熱系數(shù)為 ? ,空氣的動力粘性系數(shù)為 ? .按??PC?a 和???? 計算空氣的導(dǎo)溫系數(shù)和運動粘性系數(shù) .圍巖的熱物理參數(shù)則由現(xiàn)場采樣測定 . 初邊值的確定方法 :洞曰風(fēng)速取為現(xiàn)場觀測的各月平均風(fēng)速 .取卞導(dǎo)風(fēng)進曰的相對有效 氣壓為 0,主導(dǎo)風(fēng)出口的氣壓則取為 ]5[2 2/)/1( vdkLp ??? ,這里 k為隧道內(nèi)的沿程阻力系數(shù), L 為隧道長度, d 為隧道端面的當(dāng)量直徑, ? 為進口端面軸向平均速度 .進出口氣溫年變 化規(guī)律由現(xiàn)場觀測資料,用正弦曲線擬合,圍巖內(nèi)計算區(qū)域的邊界按現(xiàn)場多年凍土下限和地?zé)崽荻却_定出適當(dāng)?shù)臏囟戎祷驕囟忍荻?. 3 計算實例 按以上所述的模型及計算方法,我們對大興安嶺西羅奇 2號隧道內(nèi)氣溫隨洞曰外氣溫變化的規(guī)律進行了模擬計算驗證,所得結(jié)果與實測值 [6]相比較 ,基本規(guī)律一致 . 西羅奇 2 號隧道是位十東北嫩林線的一座非多年凍土單線鐵路隧道,全長1160 m ,隧道 近西北一東南向,高洞口位于西北向,冬季隧道主導(dǎo)風(fēng)向為西北風(fēng) .洞口海拔高度約為 700 m , 月平均最高風(fēng)速約為 3m/s,最低風(fēng) 速約為 ,我們將進出口氣溫擬 合為年平均分別為 5C0 和 ,年變化振幅分別為 和 C0 的正弦曲線 .隧道的當(dāng)量直徑為 m,沿程阻力系數(shù)取為 數(shù)對計算洞內(nèi)氣溫的影響 遠比洞口的風(fēng)速、壓力及氣溫的影響小得多,我們這里參考使用了大坂山隧道的資料 . 圖 1 給出了洞口及 洞內(nèi)年平均氣溫的計算值與觀測值比較的情況,從進口到出口,兩值之差都小于 . 圖 2 給出了洞內(nèi) (距進出口 l00m以上 )月平均氣溫的計算值與觀測值比較的情況,可以看出溫度變化的基本規(guī)律完全一致,造成兩值之差的主要原因是洞口氣溫年變化規(guī)律之正弦曲線的擬合誤差,特別是 1979 年隧道現(xiàn)場月平均最高氣溫不是在 7 月份,而是在 8 月份 . 重慶交通大學(xué)土木工程專 業(yè)(隧道與城市軌道交通工程方向)畢業(yè)設(shè)計外文翻譯 17 圖 1. 比較 1979 年 在 西羅奇 周家山 2 號隧道 仿真試驗與 觀察的 空氣溫度 .模擬值 。 then return to (ii)。 T is temperature。 X= (x , r), ? (t) is phase change front。分析預(yù)報了正在開鑿的祁連山區(qū)大坂山隧道開通運營后洞內(nèi)溫度及圍巖凍結(jié)、融化狀況 . 關(guān)鍵詞 嚴(yán)寒地區(qū)隧道 導(dǎo)熱與對流換熱 凍結(jié)與融化 在我國多年凍土分布及鄰近地區(qū),修筑了公路和鐵路隧道幾十座 .由于隧道開通后洞內(nèi)水熱條件的變化 。在距進出曰 200 m 以上的中間段,開通運營 8 年后開始形成多 年凍土,其中在距洞中心 200 m 的范圍內(nèi), 14— 15年后開始形成多年凍土 .多年凍土形成后的一兩年內(nèi),年最大融化深度較大 (尤其是中間段 ),以后逐年減小,至19— 20 年后融化深度基本達到穩(wěn)定,洞口段及中間段的融化深度都在 2— 3 m的范圍內(nèi) . (4)洞內(nèi)若整體性形成多年凍土,這將成為一道隔水屏障,有利于車輛運行的安全,但在目前的施土中己發(fā)現(xiàn)有些部位有較豐富的地下水,因此很有可能在地下水溢出帶中出現(xiàn)永久性融區(qū),造成洞內(nèi)滲水結(jié)冰病害,這個問題我們將在以后詳細(xì)討論 . 。2,outside air temperature year when permafrost maximum thawed depth after Begins to from in different permafrost formed in different years Sections of the surrounding rock 重慶交通大學(xué)土木工程專 業(yè)(隧道與城市軌道交通工程方向)畢業(yè)設(shè)計外文翻譯 11 4 .3 Preliminary conclusion Based on the initialboundary conditions and thermal parameters mentioned above, we obtain the following preliminary conclusions: r temperature at the entry and exit. It is warmer during the cold season and cooler during the warm season in the internal part (more than 100 m from the entry and exit) of the tunnel than at the entry and exit . Fig .1 shows that the internal monthlyaverage temperature on the surface of the tunnel wall is ℃ higher in January, February and December, 1℃ higher in March and October, and 1 .6℃ lower in June and August, and 2qC lower in July than the air temperature at the entry and exit. In other months the infernal temperature on the surface of the tunnel wall approximately equals the air temperature at the entry and exit. 2) Since it is affected by the geothermal heat in the internal surrounding section , especially in the central part, the internal amplitude of the yearlyaverage temperature on the surface of the tunnel wall decreases and is 1 .6℃ lower than that at the entry and exit. 3 ) Under the conditions that the surrounding rock is pact , without a great amount of underground water, and using a thermal insulating layer(as designed PU with depth of m and heat conductivity ? = W/m℃, FBT with depth of m and heat conductivity ? =℃ ), in the third year after tunnel construction, the surrounding rock will begin to form permafrost in the range of 200 m from the entry and exit .In the first and the second year after construction, the surrounding rock will begin to form permafrost in the range of 40 and 100m from the entry and exit respectively .In the central part, more than 200m from the entry and exit, permafrost will begin to form in the eighth year. Near the center of the tunnel, permafrost will appear in the 1415th years. During the first and second years after permafrost formed, the maximum of annual thawed depth is large (especially in the central part of the surrounding rock section) and thereafter it decreases every year. The maximum of annual thawed depth will be stable until the 1920th years 重慶交通大學(xué)土木工程專 業(yè)(隧道與城市軌道交通工程方向)畢業(yè)設(shè)計外文翻譯 12 and will remain in s range of 23 m. 4) If permafrost forms entirely in the surrounding rock , the permafrost will provide a waterisolating layer and be favourable for munication and transportation .However, in the process of construction, we found a lot of underground water in some sections of the surrounding rock .It will permanently exist in those sections, seeping out water and resulting in freezing damage to the liner layer. Further work will be reported elsewhere. 重慶交通大學(xué)土木工程專 業(yè)(隧道與城市軌道交通工程方向)畢業(yè)設(shè)計外文翻譯 13 嚴(yán)寒地區(qū)隧道圍巖凍融狀況分析的導(dǎo)熱與對 流換熱模型 摘 要 通過對嚴(yán)寒地區(qū)隧道現(xiàn)場基本氣象條件的分析,建立了隧道內(nèi)空氣與圍巖對流換熱及固體導(dǎo)熱的綜合模型 。 fS (t), uS (t) are frozen and thawed parts in the surrounding rock materials respectively。 v is the kinematic viscosity of air。 especially , the maximum monthlyaverage air temperature of 1979 was not for July but for August.