【正文】
tunnel is excavated , the original thermodynamical conditions in the surroundings are and thaw destroyed and replaced mainly by the air connections without the heat radiation, the conditions determined principally by the temperature and velocity of air flow in the tunnel,the coefficients of convective heat transfer on the tunnel wall, and the geothermal heat. In order to analyze and predict the freeze and thaw conditions of the surrounding wall rock of a tunnel, presuming the axial variations of air flow temperature and the coefficients of convective heat transfer, Lunardini discussed the freeze and thaw conditions by the approximate formulae obtained by Shamsundar in study of freezing outside a circular tube with axial variations of coolant temperature .We simulated the temperature conditions on the surface of a tunnel wall varying similarly to the periodic changes of the outside air temperature .In fact, the temperatures of the air and the surrounding wall rock material affect each other so we cannot find the temperature variations of the air flow in advance。 T is temperature。 L is the length of the tunnel。 f? , u? and fC , uC are thermal conductivities and volumetric thermal capacities in frozen and thawed parts respectively。 ( ii ) substituting U0, V0 into eq. (2), and solving (2), we obtain p0。 then return to (ii)。2,observed values 4 Prediction of the freezethaw conditions for the Dabanshan Tunnel 4 .1 Thermal parameter and initial and boundary conditions Using the elevation of 3 800 m and the yearlyaverage air temperature of 3℃ , we calculate the air density p=0 .774 kg/m3 .Since steam exists In the air, we choose the thermal capacity with a fixed pressure of air ),./( 0 CkgkJC p ? heat conductivity )./( 02 CmW???? and and the dynamic viscosity )../( 6 smkg???? After calculation we obtain the thermal diffusivity a= 1 .3788 sm /10 25?? and the kinematic viscosity, sm / 25???? . Considering that the section of automobiles is much smaller than that of the tunnel and the automobiles pass through the tunnel at a low speed,we ignore the piston effects, ing from the movement of automobiles,in the diffusion of the air. We consider the rock as a whole ponent and choose the dry volumetric cavity 3/2400 mkgd ?? ,content of water and unfrozen water W=3% and W=1%, and the thermal conductivity cmW ou ./?? , cmW of ./?? ,heat 重慶交通大學(xué)土木工程專 業(yè)(隧道與城市軌道交通工程方向)畢業(yè)設(shè)計(jì)外文翻譯 9 capacity ckgkJC oV ./? and duf W wC ????? 1 )(,duu W wC ????? 1 )( According to the data observed at the tunnel site, the maximum monthlyaverage wind speed is about 3 .5 m/s , and the minimum monthlyaverage wind speed is about 2 .5 m/s .We approximate the wind speed at the entry and exit as )/]()7(0 2 [)( 2 smttv ???? , where t is in month. The initial wind speed in the tunnel is set to be .0),0(),)(1(),0( 2 ??? rxVRrUrxU a The initial and boundary values of temperature T are set to be where f(x) is the distance from the vault to the permafrost base, and R0=25 m is the radius of domain of solution T. We assume that the geothermal gradient is 3%, the yearlyaverage air temperature outside tunnel the is A=3C0 , and the amplitude is B=12C0 . As for the boundary of R=Ro, we first solve the equations considering R=Ro as the first type of boundary。用此模型對(duì)大興安嶺西羅奇 2 號(hào)隧道的洞內(nèi)氣溫分布進(jìn)行了模擬計(jì)算,結(jié)果與實(shí)測(cè)值基本一致 。 ( 2)將 0U , 0V 代入方程并求解,得 0P (3)聯(lián)立方程 (1)的第一個(gè)和第二個(gè)方程,解得一組解 1U , 1V 。在洞壁表面上方程系數(shù)的光滑化 .另 外,帶相變的溫度場(chǎng)的算法與文獻(xiàn) [3]相同 . 2. 3 熱參數(shù)及初邊值的確定 熱參數(shù)的確定方法 : 用 p= 計(jì)算出海拔高度為 H 的隧道現(xiàn)場(chǎng)的大氣 壓強(qiáng),再由 GTP?? 計(jì)算出現(xiàn)場(chǎng)空氣密度 ? ,其中 T為現(xiàn)場(chǎng)大氣的年平均絕對(duì)溫重慶交通大學(xué)土木工程專 業(yè)(隧道與城市軌道交通工程方向)畢業(yè)設(shè)計(jì)外文翻譯 16 度, G為空氣的氣體常數(shù) .記定壓比熱為 PC ,導(dǎo)熱系數(shù)為 ? ,空氣的動(dòng)力粘性系數(shù)為 ? .按??PC?a 和???? 計(jì)算空氣的導(dǎo)溫系數(shù)和運(yùn)動(dòng)粘性系數(shù) .圍巖的熱物理參數(shù)則由現(xiàn)場(chǎng)采樣測(cè)定 . 初邊值的確定方法 :洞曰風(fēng)速取為現(xiàn)場(chǎng)觀測(cè)的各月平均風(fēng)速 .取卞導(dǎo)風(fēng)進(jìn)曰的相對(duì)有效 氣壓為 0,主導(dǎo)風(fēng)出口的氣壓則取為 ]5[2 2/)/1( vdkLp ??? ,這里 k為隧道內(nèi)的沿程阻力系數(shù), L 為隧道長度, d 為隧道端面的當(dāng)量直徑, ? 為進(jìn)口端面軸向平均速度 .進(jìn)出口氣溫年變 化規(guī)律由現(xiàn)場(chǎng)觀測(cè)資料,用正弦曲線擬合,圍巖內(nèi)計(jì)算區(qū)域的邊界按現(xiàn)場(chǎng)多年凍土下限和地?zé)崽荻却_定出適當(dāng)?shù)臏囟戎祷驕囟忍荻?. 3 計(jì)算實(shí)例 按以上所述的模型及計(jì)算方法,我們對(duì)大興安嶺西羅奇 2號(hào)隧道內(nèi)氣溫隨洞曰外氣溫變化的規(guī)律進(jìn)行了模擬計(jì)算驗(yàn)證,所得結(jié)果與實(shí)測(cè)值 [6]相比較 ,基本規(guī)律一致 . 西羅奇 2 號(hào)隧道是位十東北嫩林線的一座非多年凍土單線鐵路隧道,全長1160 m ,隧道 近西北一東南向,高洞口位于西北向,冬季隧道主導(dǎo)風(fēng)向?yàn)槲鞅憋L(fēng) .洞口海拔高度約為 700 m , 月平均最高風(fēng)速約為 3m/s,最低風(fēng) 速約為 ,我們將進(jìn)出口氣溫?cái)M 合為年平均分別為 5C0 和 ,年變化振幅分別為 和 C0 的正弦曲線 .隧道的當(dāng)量直徑為 m,沿程阻力系數(shù)取為 數(shù)對(duì)計(jì)算洞內(nèi)氣溫的影響 遠(yuǎn)比洞口的風(fēng)速、壓力及氣溫的影響小得多,我們這里參考使用了大坂山隧道的資料 . 圖 1 給出了洞口及 洞內(nèi)年平均氣溫的計(jì)算值與觀測(cè)值比較的情況,從進(jìn)口到出口,兩值之差都小于 . 圖 2 給出了洞內(nèi) (距進(jìn)出口 l00m以上 )月平均氣溫的計(jì)算值與觀測(cè)值比較的情況,可以看出溫度變化的基本規(guī)律完全一致,造成兩值之差的主要原因是洞口氣溫年變化規(guī)律之正弦曲線的擬合誤差,特別是 1979 年隧道現(xiàn)場(chǎng)月平均最高氣溫不是在 7 月份,而是在 8 月份 . 重慶交通大學(xué)土木工程專 業(yè)(隧道與城市軌道交通工程方向)畢業(yè)設(shè)計(jì)外文翻譯 17 圖 1. 比較 1979 年 在 西羅奇 周家山 2 號(hào)隧道 仿真試驗(yàn)與 觀察的 空氣溫度 .模擬值 。我們將洞口風(fēng)速擬合為 )/]()7(0 2 [)( 2 smttv ???? ,這里 t 為月份 . 洞內(nèi)風(fēng)速初值為: .0),0(),)(1(),0( 2 ??? rxVRrUrxU a這里取smUa /? .而將 溫度的初邊值取為 這里記 f (x)為多年凍土下限到隧道拱頂?shù)木嚯x, Ro = 25m 為求解區(qū)域的半徑 .地?zé)崽荻热? 3%,洞外天然年平均氣溫 A=3C0 ,年氣溫變化振幅 B=12C0 . 對(duì)于邊界 R = Ro,我們先按第一類邊值 (到多年凍土下限的距離乘以 3 %)計(jì)算,發(fā)現(xiàn)一年后,在半徑為 5m 到 25m 范圍內(nèi)圍巖的熱流方向己經(jīng)發(fā)生轉(zhuǎn)向 .考慮到此后圍巖會(huì)繼續(xù)冷卻,但在邊界 R= 0R 上又 受地?zé)崽荻鹊淖饔?,我們近似地將邊?R= Ro 作為第二類邊界處理,即把由定邊值計(jì)算一年后