【正文】
。在本文的第二部分將是一個額外的評估介紹 :用曲軸的動態(tài)響應(yīng)來控制第一特征頻率 ,部首自身的中立影響。仿真所需的鍛造過程是為了定義一個好的形狀曲線和可制造性之間的關(guān)系。 參考文獻(xiàn) [1] . Mourelatos, “ A crankshaft system model for structural dynamic analysis of internal bustion engines,” Computers amp。 圖 CW9概要文件 總結(jié)和結(jié)論 使用 Java接口允許遺傳算法集成到 CAD軟件上 ,在論文的第一部分 , 進(jìn)行優(yōu)化曲軸不平衡。據(jù)此推斷 ,要想達(dá)到平衡的目標(biāo) ,可能需要考慮這些約束?;ㄦI配置文件允許形狀改變了遺傳算法由于編纂樣條曲線的控制點扮演的基因。這個方法可能是最簡單的形式制定如下 : xs ubj e c tTixfiki ???? 1 )(min Ti 表示目標(biāo)或目標(biāo)設(shè)定的第 i 個目標(biāo)函數(shù) fi 設(shè)計師 (x)和 x 代表了可行域。的合成彎矩等于時刻由離心力引起的由于曲軸質(zhì)量重心 ,目前是由校正的質(zhì)量不平衡引起的。 EA:進(jìn)化算法 。因為一般來說我們的方法需要考慮的目標(biāo)函數(shù)是一個黑盒子,和目標(biāo)函數(shù)值的唯一的供應(yīng)可以保證,沒有進(jìn)一步的假設(shè)進(jìn)行了審議。的曲軸設(shè)計所選擇的目標(biāo)是要達(dá)到的目標(biāo)失衡和減少其重量和 /或增加它的第一特征頻率。燃?xì)饧膳c在參數(shù)和結(jié)構(gòu)優(yōu)化目前用于尋找最優(yōu)的拓?fù)浣Y(jié)構(gòu)和形狀給 CAD和 CAE系統(tǒng)部分在一定條件下。形狀優(yōu)化基于遺傳算法( GA )或基于進(jìn)化算法( EA )在一般情況下,是研究的一個較新的領(lǐng)域。這些改進(jìn)依賴于材料組成之一 ,隨著公司的發(fā)展 ,內(nèi)燃機(jī)鍛鋼曲軸實際表達(dá)了他們的意圖改變結(jié)節(jié)性鋼從發(fā)動機(jī)曲軸。首先是曲軸的平衡被定義為一個獨(dú)立的目標(biāo)函數(shù) ,其次是失衡的帕累托優(yōu)化兩點校正 ,并且限制物體的曲率的關(guān)鍵在于鍛造。本文描述了一個總體戰(zhàn)略 ,優(yōu)化曲軸的平衡 , 通過用 Java編程結(jié)合 CAD和 CAE軟件計算出最優(yōu)的參數(shù)。 MOGA: Multiobjective Geic Algorithm。 CAE). CAD and CAE systems are currently used in Parametric and Structural Optimization to find optimal topologies and shapes of given parts under certain conditions. This paper describes a general strategy to optimize the balance of a crankshaft, using CAD and CAE software integrated with Geic Algorithms (GAs) via programming in Java. An introduction to the groundings of this strategy is made among different tools used for its implementation. The analyzed crankshaft is modeled in mercial parametric 3D CAD software. CAD is used for evaluating the fitness function (the balance) and to make geometric modifications. CAE is used for evaluating dynamic restrictions (the eigenfrequencies). A Java interface is programmed to link the CAD model to the CAE software and to the geic algorithms. In order to make geometry modifications to our case study, it was decided to substitute the profile of the counterweights with splines from its original “arcshaped” design. The variation of the splined profile via control points results in an imbalance response. The imbalance of the crankshaft was defined as an independent objective function during a first approach, followed by a Pareto optimization of the imbalance from both correction planes, plus the curvature of the profile of the counterweights as restrictions for material flow during fing. The natural frequency was considered as an additional objective function during a second approach. The optimization process runs fully automated and the CAD program is on hold waiting for new set of parameters to receive and process, saving puting time, which is otherwise lost during the repeated startup of the cad application. The development of engine crankshafts is subject to a continuous evolution due to market pressures. Fast market developments push the increase of power, fuel economy, durability and reliability of bustion engines, and calls for reduction of size, weight, vibration and noise, cost, etc. Optimized engine ponents are therefore required if petitive designs must be attained. Due to this conditions, crankshafts, which are one of the most analyzed engine ponents, are required to be improved [1]. One of these improvements relies on material position, as panies that develop bustion engines have expressed their intentions to change actual nodular steel crankshafts from their engines, to fed steel crankshafts. Another important direction of improvement is the optimization of its geometrical characteristics. In particular for this paper is the imbalance, first Eigenfrequency and the feability. Analytical tools can greatly enhance the understanding of the physical phenomena associated with the mentioned characteristics and can be automated to do programmed tasks that an engineer requires for optimizing a design [2].The goals of the present research are: to construct a strategy for the development of engine crankshafts based on the integration of: CAD and CAE (Computer Aided Design amp。gico de Monterrey through Grant No. CAT043 to carry out the research reported in this paper. REFERENCES [1] . Mourelatos, “A crankshaft system model for structural dynamic analysis of internal bustion engines,” Computers amp。 CAD 適用于適應(yīng)度函數(shù) (平衡 )和幾何修改。 前 言 發(fā)動機(jī)曲軸由于受到持續(xù)的發(fā)展演變市場的壓力。分析工具可以大大提高對 物理現(xiàn)象的理解與提到的相關(guān)特性 , 工程師需要優(yōu)化設(shè)計編程任務(wù)可以自動完成 [2]。在進(jìn)化形態(tài)優(yōu)化 技術(shù)對研究的興趣才剛剛開始增長,包括最有前途的領(lǐng)域 EA為基礎(chǔ)的形狀優(yōu)化的應(yīng)用程序之一:機(jī)械工程。為了使這種結(jié)合,有必要開發(fā)到氣體鏈接到 CAD模型和給 CAE分析的接口。不像單目標(biāo)優(yōu)化,要解決這個問題不是一個單一的點 ,而是一個家族被稱為 Pareto最優(yōu)的點集。傳統(tǒng)上, GA的使用二進(jìn)制數(shù)字來表示這樣的字符串:字符串具有有限的長度和字符串的每一位可以是 0或 1,通過維護(hù)解決方案的人口,遺傳算法的可搜索的并行多帕累托最優(yōu)的解決方案。 CW:配重 。同樣 ,時刻被正確的校正飛機(jī)發(fā)現(xiàn)左邊的不平衡 : llxymgrgymLrL y??)21( ( 3) llx zm gr gzm L r L z ?? )21( ( 4) 計算不平衡所需的質(zhì)量 (毫克、 rgy rgz 和慣性產(chǎn)品 Ixy Ixz)的曲軸模型可以從參數(shù)化 CAD 中獲得先進(jìn)的計算數(shù)據(jù) ,它具有特殊的命令模塊,作為計算不平衡響應(yīng)評估。可以看出兩者的不平衡校正飛機(jī) ,即使是在修正區(qū)域 ,它不是接近 400 gcm定義為目標(biāo)。應(yīng)該指出的是本來預(yù)期達(dá)到目標(biāo)的平衡 ,圖中沒有顯示定義邊界。增加了一個額外的目標(biāo)函數(shù) : 根據(jù)測試文件測量資料的運(yùn)用描繪出所有曲線的曲率的。如第二部分所述進(jìn)一步與 CAE 軟件的集成 ,