【正文】
如第二部分所述進(jìn)一步與 CAE 軟件的集成 , 。應(yīng)該指出的是本來預(yù)期達(dá)到目標(biāo)的平衡 ,圖中沒有顯示定義邊界。同樣 ,時(shí)刻被正確的校正飛機(jī)發(fā)現(xiàn)左邊的不平衡 : llxymgrgymLrL y??)21( ( 3) llx zm gr gzm L r L z ?? )21( ( 4) 計(jì)算不平衡所需的質(zhì)量 (毫克、 rgy rgz 和慣性產(chǎn)品 Ixy Ixz)的曲軸模型可以從參數(shù)化 CAD 中獲得先進(jìn)的計(jì)算數(shù)據(jù) ,它具有特殊的命令模塊,作為計(jì)算不平衡響應(yīng)評(píng)估。傳統(tǒng)上, GA的使用二進(jìn)制數(shù)字來表示這樣的字符串:字符串具有有限的長(zhǎng)度和字符串的每一位可以是 0或 1,通過維護(hù)解決方案的人口,遺傳算法的可搜索的并行多帕累托最優(yōu)的解決方案。為了使這種結(jié)合,有必要開發(fā)到氣體鏈接到 CAD模型和給 CAE分析的接口。分析工具可以大大提高對(duì) 物理現(xiàn)象的理解與提到的相關(guān)特性 , 工程師需要優(yōu)化設(shè)計(jì)編程任務(wù)可以自動(dòng)完成 [2]。 CAD 適用于適應(yīng)度函數(shù) (平衡 )和幾何修改。 CAE). CAD and CAE systems are currently used in Parametric and Structural Optimization to find optimal topologies and shapes of given parts under certain conditions. This paper describes a general strategy to optimize the balance of a crankshaft, using CAD and CAE software integrated with Geic Algorithms (GAs) via programming in Java. An introduction to the groundings of this strategy is made among different tools used for its implementation. The analyzed crankshaft is modeled in mercial parametric 3D CAD software. CAD is used for evaluating the fitness function (the balance) and to make geometric modifications. CAE is used for evaluating dynamic restrictions (the eigenfrequencies). A Java interface is programmed to link the CAD model to the CAE software and to the geic algorithms. In order to make geometry modifications to our case study, it was decided to substitute the profile of the counterweights with splines from its original “arcshaped” design. The variation of the splined profile via control points results in an imbalance response. The imbalance of the crankshaft was defined as an independent objective function during a first approach, followed by a Pareto optimization of the imbalance from both correction planes, plus the curvature of the profile of the counterweights as restrictions for material flow during fing. The natural frequency was considered as an additional objective function during a second approach. The optimization process runs fully automated and the CAD program is on hold waiting for new set of parameters to receive and process, saving puting time, which is otherwise lost during the repeated startup of the cad application. The development of engine crankshafts is subject to a continuous evolution due to market pressures. Fast market developments push the increase of power, fuel economy, durability and reliability of bustion engines, and calls for reduction of size, weight, vibration and noise, cost, etc. Optimized engine ponents are therefore required if petitive designs must be attained. Due to this conditions, crankshafts, which are one of the most analyzed engine ponents, are required to be improved [1]. One of these improvements relies on material position, as panies that develop bustion engines have expressed their intentions to change actual nodular steel crankshafts from their engines, to fed steel crankshafts. Another important direction of improvement is the optimization of its geometrical characteristics. In particular for this paper is the imbalance, first Eigenfrequency and the feability. Analytical tools can greatly enhance the understanding of the physical phenomena associated with the mentioned characteristics and can be automated to do programmed tasks that an engineer requires for optimizing a design [2].The goals of the present research are: to construct a strategy for the development of engine crankshafts based on the integration of: CAD and CAE (Computer Aided Design amp。本文描述了一個(gè)總體戰(zhàn)略 ,優(yōu)化曲軸的平衡 , 通過用 Java編程結(jié)合 CAD和 CAE軟件計(jì)算出最優(yōu)的參數(shù)。這些改進(jìn)依賴于材料組成之一 ,隨著公司的發(fā)展 ,內(nèi)燃機(jī)鍛鋼曲軸實(shí)際表達(dá)了他們的意圖改變結(jié)節(jié)性鋼從發(fā)動(dòng)機(jī)曲軸。燃?xì)饧膳c在參數(shù)和結(jié)構(gòu)優(yōu)化目前用于尋找最優(yōu)的拓?fù)浣Y(jié)構(gòu)和形狀給 CAD和 CAE系統(tǒng)部分在一定條件下。因?yàn)橐话銇碚f我們的方法需要考慮的目標(biāo)函數(shù)是一個(gè)黑盒子,和目標(biāo)函數(shù)值的唯一的供應(yīng)可以保證,沒有進(jìn)一步的假設(shè)進(jìn)行了審議。的合成彎矩等于時(shí)刻由離心力引起的由于曲軸質(zhì)量重心 ,目前是由校正的質(zhì)量不平衡引起的。花鍵配置文件允許形狀改變了遺傳算法由于編纂樣條曲線的控制點(diǎn)扮演的基因。 圖 CW9概要文件 總結(jié)和結(jié)論 使用 Java接口允許遺傳算法集成到 CAD軟件上 ,在論文的第一部分 , 進(jìn)行優(yōu)化曲軸不平衡。仿真所需的鍛造過程是為了定義一個(gè)好的形狀曲線和可制造性之間的關(guān)系。由此產(chǎn)生的幾何的圖形如圖 6 所示。這些值納入額外約束的問題。 各部分名稱 CAD:計(jì)算機(jī)輔助設(shè)計(jì) 。它們代表的功能和所設(shè)計(jì)過程中使用的軟件工具進(jìn)行分析的限制。具體需求滿足的以下策略 : V6 發(fā)動(dòng)機(jī)曲軸的不平衡 ,它的重量或其可制造性不會(huì)受到影響 允許集成不同的軟件開發(fā)接口編程 :CAD 建模和幾何評(píng)估 ,CAE 模擬分析和評(píng)估 ,為優(yōu)化和遺傳 算法尋找替代品 設(shè)計(jì)師更好地開發(fā)一個(gè)曲軸要有新的設(shè)計(jì)概念包括形狀能夠相互制衡 ,更優(yōu)越的性能,比使用手冊(cè)要更加的好。我們的案例研究的是幾何修改 ,這是從原來的“弧形”設(shè)計(jì)用樣條函數(shù)替代砝碼的形象決定的。 EA: Evolutionary Algorithms。 [6] M. Olhofer, Yaochu Jin, and B. Sendh off, “Adaptiveen coding for aerodynamic shape optimization using evolution strategies,” Evolutionary Computation, Seoul: 2021, pp. 576583. [7] J. Lampinen, “Cam shape optimization by geical gorithm,” ComputerAided Design, vol. 35, 2021, . [8] M. Eldred et al., DAKOTA, A Multilevel ParallelObjectOriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, andSensitivity Analysis. Reference Manual, USA: Sandia Laboratories, 2021. [9] Y. Kang et al., “An accuracy improvement for balancing crankshafts,” Mechanism and Machine Theory, vol. 38,2021, pp. 14491467. [10] S. Obayashi, T. Ts