【摘要】3.2.1倍角公式一。學(xué)習(xí)要點(diǎn):二倍角公式及其簡(jiǎn)單應(yīng)用。二。學(xué)習(xí)過程:復(fù)習(xí):和角公式.新課學(xué)習(xí):sin2??cos2??tan2??升冪公式:降冪公式:例1、已知5sin2
2025-11-09 16:43
【摘要】、余弦、正切公式2020、12、24一、復(fù)習(xí):?)cos(????C)(???簡(jiǎn)記:兩角差的余弦公式??)cos(??????sinsincoscos?同名積,符號(hào)反。二、公式的推導(dǎo)??)cos(??)](cos[???????
2025-11-09 12:17
【摘要】第三章一、選擇題1.函數(shù)y=cos2x2的最小正周期是()A.π3B.π4C.πD.2π[答案]D[解析]y=cos2x2=1+cosx2,∴函數(shù)y=cos2x2的最小正周期T=2π.2.下列各式中,值等于12的是()A.cos45°co
2025-11-19 01:11
【摘要】3.3三角函數(shù)的積化和差與和差化積一。學(xué)習(xí)要點(diǎn):積化和差與和差化積公式及其簡(jiǎn)單應(yīng)用。二。學(xué)習(xí)過程:1.積化和差公式2.和差化積公式例1:1。把cos3cos???化成積的形式.2。把1sincos????化成積的形式例2:已知
2025-11-18 23:35
【摘要】弧度制和弧度制與角度制的換算一、教學(xué)目標(biāo)1.知識(shí)目標(biāo):①了解弧度制,能進(jìn)行弧度與角度的換算.②認(rèn)識(shí)弧長(zhǎng)公式,能進(jìn)行簡(jiǎn)單應(yīng)用.對(duì)弧長(zhǎng)公式只要求了解,會(huì)進(jìn)行簡(jiǎn)單應(yīng)用,不必在應(yīng)用方面加深.2.能力目標(biāo):①了解弧度制引入的必要性及弧度制與角度制的區(qū)別與聯(lián)系.②了解角的集合與實(shí)數(shù)集建立了一一對(duì)
2025-11-09 16:46
【摘要】余弦函數(shù)、正切函數(shù)的圖象與性質(zhì)一.學(xué)習(xí)要點(diǎn):余弦函數(shù)、正切函數(shù)的圖象與性質(zhì)二.學(xué)習(xí)過程:1.余弦函數(shù)的圖象2.余弦函數(shù)的性質(zhì)(1)定義域:.(2)值域:當(dāng)時(shí),max1y?.當(dāng)
2025-11-09 16:45
【摘要】高一數(shù)學(xué)正切函數(shù)的圖像與性質(zhì)林銀玲目標(biāo)1、借助正切函數(shù)的圖像,說出正切函數(shù)的性質(zhì);2、能利用正切函數(shù)的性質(zhì)解決最值、奇偶性、單調(diào)性、周期性等有關(guān)問題;自學(xué)指
【摘要】?jī)山呛团c差的正弦、余弦、正切公式學(xué)習(xí)目標(biāo):1.掌握由兩角差的余弦公式推導(dǎo)出兩角和的余弦公式及兩角和與差的正弦公式.2.會(huì)用兩角和與差的正、余弦公式進(jìn)行簡(jiǎn)單的三角函數(shù)的求值、化簡(jiǎn)、計(jì)算等.3.熟悉兩角和與差的正、余弦公式的靈活運(yùn)用,了解公式的正用、逆用以及角的變換的常用方法.學(xué)習(xí)重點(diǎn)
2025-11-26 06:46
【摘要】?jī)山呛团c差的正弦、余弦、正切公式學(xué)習(xí)目標(biāo):1.能利用兩角和與差的正、余弦公式推導(dǎo)出兩角和與差的正切公式.2.能利用兩角和與差的正切公式進(jìn)行化簡(jiǎn)、求值、證明.3.熟悉兩角和與差的正切公式的常見變形,并能靈活應(yīng)用.學(xué)習(xí)重點(diǎn):兩角和、差正切公式的推導(dǎo)過程及運(yùn)用學(xué)習(xí)難點(diǎn):兩角和與差正切公式的靈活運(yùn)用一.