【摘要】第一章習題解答1、證明A(BC)=(AB)(AC)證明:設xA(BC),則xA或x(BC),若xA,則xAB,且xAC,從而x(AB)(AC)。若xBC,則xB且xC,于是xAB且xAC,從而x(AB)(AC),因此A(BC)(AB)(AC)……………(1)設x(AB)(AC),若xA,則xA(BC),若xA,由xAB且xAC知xB且xC,所以xBC,所以xA(BC
2025-03-25 00:35
【摘要】1對數(shù)函數(shù)——高中數(shù)學(一)教材分析:時側重于掌握對數(shù)函數(shù)的概念與圖象和性質(zhì),第二課時側重于利用對數(shù)函數(shù)的性質(zhì)比較兩個數(shù)的大小及解對數(shù)不等式,第三課時研究由對數(shù)形式的3函數(shù)的圖象及單調(diào)性。通過本節(jié)課的學習可以加深對函數(shù)本質(zhì)的認識,又是后面學習冪函數(shù)、三角函數(shù)的基礎,此外在比較數(shù)的大小,函數(shù)的定性分析
2024-11-26 23:38
【摘要】2022年3月13日星期日場論與復變函數(shù)?岳安軍西安電子科技大學通信工程學院西安電子科技大學通信工程學院2教學安排及方式?總學時46學時,講課40學時,習題課6學時2022年3月13日星期日第三章復變函數(shù)的積分?§復變函數(shù)積分的概念?
2025-02-18 23:10
【摘要】三角函數(shù)全章復習1)任意角及其三角函數(shù)的定義2)弧度制,扇形的弧長、周長、面積3)三角公式:同角關系;誘導公式;兩角和差公式;二倍角公式;半角公式;和積互化公式4)正弦、余弦、正切函數(shù)的圖象(五點法)性質(zhì)-----定義域、值域、奇偶性(對稱性)、單調(diào)性、周期性。)si
2024-11-09 00:54
【摘要】?1.3三角函數(shù)的誘導公式?1.誘導公式二~四?(1)公式二?sin(π+α)=;?cos(π+α)=;?tan(π+α)=.?(2)公式三?sin(-α)=;?cos(-α)=;?tan(-α)=.-sinα-cosαta
2024-11-12 17:43
【摘要】你記住了嗎?度弧度0003004506009001200135015001800270036006?4?3?2?23?34?56?32??2??sin?cos?tan?cot2123333212333
【摘要】為常數(shù))????(x)x)(1(1'??1)a0,lna(aa)a)(2(x'x???且1)a,0a(xlna1elogx1)xlog)(3(a'a????且sinx(7)(cosx)'??e)e)(4(x'x?x1
2024-11-09 00:25
【摘要】ks5u精品課件ks5u精品課件教學目的:1、掌握任意角的正弦、余弦、正切的定義,了解任意角的余切、正割、余割的定義;2、掌握三角函數(shù)值的符號的確定方法;3、記住三角函數(shù)的定義域、值域,誘導公式(一);4、利用三角函數(shù)線表示正弦、余弦、正切的三角函數(shù)值。教學重點、難點:重點:三角函數(shù)的定義,各三角函數(shù)值在每個象限的符號
2024-11-12 16:46
【摘要】X授課人:王德生折紙試驗:請每個同學拿出一張紙,進行對折。一次,兩次,……例1:假設你是一個投資家,現(xiàn)有三種投資方案供你選擇,這三種方案的回報如下:方案一:每年回報100萬元;方案二:第一年回報50萬元,以后每年比前一年多回報20萬元;方案三:第一年回報2萬元,以后每年的回報比前一年翻一番。請問
2024-11-12 18:20