【摘要】勾股定理的實(shí)際應(yīng)用長(zhǎng)治十九中初二數(shù)學(xué)教學(xué)目標(biāo)?會(huì)用勾股定理及其逆定理綜合解決簡(jiǎn)單的實(shí)際問(wèn)題。?感受由現(xiàn)實(shí)例子引出問(wèn)題,合理構(gòu)建數(shù)學(xué)模型。?學(xué)會(huì)開(kāi)放性地尋求解決方案,培養(yǎng)分析解決問(wèn)題的能力,體會(huì)到用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的重要性。學(xué)情分析(1)本次教學(xué)對(duì)象是長(zhǎng)治十九中初二學(xué)生;(2)學(xué)生能夠基本掌握勾股定理
2024-10-12 10:56
【摘要】勾股定理的應(yīng)用學(xué)習(xí)目標(biāo)1.明確解決路線(xiàn)最短問(wèn)題應(yīng)轉(zhuǎn)化為“在同一平面內(nèi),兩點(diǎn)之間線(xiàn)段最短”.2.掌握構(gòu)造直角三角形,運(yùn)用勾股定理求線(xiàn)段的長(zhǎng).課前預(yù)習(xí)1.已知三角形的三邊長(zhǎng)分別為5,12,13,則此三角形的面積為.2.有一組勾股數(shù),其中兩個(gè)為8和15,那么第三個(gè)為.
2024-11-25 22:44
【摘要】勾股定理的逆定理第十七章勾股定理第1課時(shí)一、情境引入?據(jù)說(shuō),幾千年前的古埃及人就已經(jīng)知道,在一根繩子上連續(xù)打上等距離的13個(gè)結(jié),然后,用釘子將第1個(gè)與第13個(gè)結(jié)釘在一起,拉緊繩子,再在第4個(gè)和第8個(gè)結(jié)處各釘上一個(gè)釘子,如圖。這樣圍成的三角形中,最長(zhǎng)邊所對(duì)的角就是直角。知道為什么嗎?也就意味著,如果圍成三
2024-12-07 17:29
【摘要】勾股定理的逆定理》教學(xué)設(shè)計(jì)邢臺(tái)縣晏家屯中學(xué)徐立萍學(xué)習(xí)目標(biāo)1.理解勾股定理的逆定理的證明方法和證明過(guò)程;2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是直角三角教學(xué)重難點(diǎn)勾股定理的逆定理及其應(yīng)用.勾股定理的逆定理的證
2025-01-07 14:03
【摘要】初二數(shù)學(xué)備課組蔡曉瓊CAB∟在Rt△ABC中,∠C=90°,1、若BC=9,AC=12,則AB=______.2、若BC=8,AB=10,則AC=______.3、若AC=5,AB=13,則BC=______.4、若AC+AB=9,BC=3則AC=_____,AB=____
2025-07-18 13:20
【摘要】勾股定理的應(yīng)用㈠揚(yáng)中市西來(lái)中學(xué)陳永林?直角三角形兩直角邊的平方和等于斜邊的平方.?斜邊是最長(zhǎng)邊,肯定是兩個(gè)直角邊的平方和等于斜邊的平方南京玄武湖東西隧道與中央路北段及龍?bào)绰反笾鲁芍苯侨切?從C處到B處,如果直接走湖底隧道CB,比繞道CA(約)
2025-08-01 16:45
【摘要】勾股定理的綜合應(yīng)用一、知識(shí)點(diǎn)聚焦如果直角三角形兩直角邊分別為a,b,斜邊為c,那么勾股定理a2+b2=c2直角三角形兩直角邊的平方和等于斜邊的平方.即課前熱身勾股定理的逆定理如果三角形的三邊長(zhǎng)a,b,c滿(mǎn)足a2+b2=c2,那么這個(gè)三角形是直角三角形直角三角形的判定
2025-07-18 14:19
【摘要】逆定理(一)勾股定理如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2學(xué)習(xí)目標(biāo)1、探究并證明勾股定的逆定理,并能運(yùn)用勾股定理的逆定理判斷一個(gè)三角形是否是直角三角形;2、了解原命題、逆命題、原定理、逆定理、勾股數(shù)的概念,并了解原命題是真命題,它的逆命題不一定是真命題。
2024-11-21 05:35
【摘要】14.2勾股定理的應(yīng)用第14章勾股定理第2課時(shí)勾股定理及其逆定理的綜合運(yùn)用2.如圖,在4×5網(wǎng)格中,每個(gè)小正方形的頂點(diǎn)都叫做格點(diǎn),點(diǎn)A是其中的一個(gè)格點(diǎn),若B,C也是網(wǎng)格中的格點(diǎn),且△ABC是以BC為底邊,腰長(zhǎng)為的等腰直角三角形,那么符合條件的△ABC一共有()A.6個(gè)B.
2024-11-09 13:34