【摘要】兩角和與差的正弦、余弦、正切公式一、和角與差角公式應用的規(guī)律兩角和與差的正、余弦公式主要用于求值、化簡、證明等三角變換,常見的規(guī)律如下:①配角的方法:通過對角的“合成”與“分解”,尋找欲求角與已知角的內在聯(lián)系,靈活應用公式,如α=(α+β)-β,α=21(α+β)+21(α-β)等.②公式的逆用與變形公式的活用
2024-12-05 06:46
【摘要】課題兩角和與差的正弦、余弦、正切公式(一)教學目標知識與技能理解以兩角差的余弦公式為基礎,推導兩角和、差正弦和正切公式的方法過程與方法體會三角恒等變換特點的過程,理解推導過程,掌握其應用情感態(tài)度價值觀聯(lián)想觀察分析靈活運用公式重點兩角和、差正弦和正切公式的推導過程及運用難點兩角和與差正弦
【摘要】1第3章三角恒等變換二倍角的三角函數(shù)2二倍角的三角函數(shù)公式22cos1???212sin??????cossinsin22????222sincoscos?????2122tantantan??3(3)8sincoscos
2024-11-18 08:49
【摘要】兩角和與差的正弦、余弦、正切公式重點:公式的應用.難點:公式的推導及變形應用.六個公式的特征兩角和(差)的余弦:余余、正正、符號異(即公式右端分別是α與β的余弦之積,以及正弦之積,中間的符號與左邊相反);兩角和(差)的正弦:正余、余正、符號同;兩角和(差)的正切:分子同、分母異.它們的內在聯(lián)系如下:一、和(差)角的余弦公式
【摘要】課題:兩角和與差的正切(2)班級:姓名:學號:第學習小組【學習目標】,化簡及證明三角恒等式;?!菊n前預習】1、若??tantan?,是方程0382???xx的兩根,且??,為銳角,則??)cos(??2、若????
2024-12-05 10:15
【摘要】二倍角的三角函數(shù)(1)【學習目標】、余弦、正切公式;、化簡、恒等證明。【學習重點難點】[來重點:;。難點:理解倍角公式,用單角的三角函數(shù)表示二倍角的三角函數(shù)?!緦W習過程】(一)預習指導:、余弦、正切方式:sin(α+β)=(S???)cos
2024-11-20 01:05
【摘要】課題:二倍角的三角函數(shù)(1)班級:姓名:學號:第學習小組【學習目標】會用二倍角公式進行求值、化簡和證明【課前預習】1.sin()????;cos();tan()????????2、角?的三角函數(shù)與角?2
【摘要】二倍角的三角函數(shù)(2)【學習目標】“倍角”與“二次”的關系(升角——降次,降角——升次),且要善于變形:,這兩個形式今后常用要求學生能較熟練地運用公式進行化簡、求值、證明,增強靈活運用數(shù)學知識和邏輯推理能力【學習重點難點】重點:理解倍角公式,用單
【摘要】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角和與差的正弦、余弦、正切公式(一)1.能根據(jù)兩角差的余弦公式推導出兩角和與差的正弦公式及兩角和的余弦公式,并能利用公式進行化簡求值.(重點)2.熟練掌握兩角和與差的正弦、余弦公式的特征和符號規(guī)律.(易混點)3.能正用、逆用、變形用公式進行化簡求值.
2024-12-04 18:51