【摘要】3確定二次函數(shù)的表達式..二次函數(shù)解析式有哪幾種表達方式?一般式:y=ax2+bx+c頂點式:y=a(x-h)2+k如何求二次函數(shù)的解析式?已知二次函數(shù)圖象上三個點的坐標,可用待定系數(shù)法求其解析式.交點式:y=a(x-x1)(x-x2)解析:設所求的二次函數(shù)為y=ax2+bx+c,由條件得:
2025-06-15 03:00
2025-06-15 02:54
【摘要】3確定二次函數(shù)的表達式【基礎梳理】確定二次函數(shù)表達式的一般方法已知條件選用表達式的形式頂點和另一點的坐標_______二次函數(shù)各項系數(shù)中的一個和兩點的坐標_______三個點的坐標_______頂點式一般式一般式【自我診斷】1.(1)確定二次函數(shù)的表達式一般需要三個條件.(
2025-06-12 13:43
【摘要】第二章二次函數(shù)知識點1用一般式(三點式)確定二次函數(shù)表達式(1,0),(2,0)和(0,2)三點的二次函數(shù)的表達式是(D)=2x2+x+2=x2+3x+2=x2-2x+3=x2-3x+2y軸交點的縱坐標為1,且經(jīng)過點(2,5)和(-2,13),求這個二次函數(shù)的表達式.
2025-06-18 00:27
【摘要】5二次函數(shù)與一元二次方程,體會方程與函數(shù)之間的聯(lián)系.x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關系,理解何時方程有兩個不等的實數(shù)根、兩個相等的實數(shù)根和沒有實數(shù)根.x軸交點的橫坐標.ax2+bx+c=0的求根公式是什么?當b2-4ac≥0時,當b2-4ac0時,方程無實數(shù)根.aacbbx2
2025-06-15 02:55
【摘要】5二次函數(shù)與一元二次方程【基礎梳理】y=ax2+bx+c(a≠0)與一元二次方程ax2+bx+c=0(a≠0)的關系拋物線y=ax2+bx+c與x軸的交點的個數(shù)一元二次方程ax2+bx+c=0(a≠0)的根的情況2_______________1_______________0_______
2025-06-12 12:32
2025-06-21 02:27
【摘要】想一想復習回顧y=ax2+bx+c(a≠0)ax2+bx+c=0(a≠0)ax2+bx+c>0(a≠0)北師大版九年級數(shù)學(下)第二章說一說問題探究1、二次函數(shù)y=x2-2x-3的圖象的對稱軸和頂點坐標分別是什么?與y軸的交點呢?2、你能做出它的大致圖象嗎
2024-12-08 10:53
2025-06-15 03:01
【摘要】x012344-xy二次函數(shù)的三種表示法兩個數(shù)的和為4,并且設一個數(shù)為x,它們的積為y.(1)用函數(shù)表達式表示:y=_______________.(2)用表格表示:4321003430x(4-x)(3)用圖象表示:答案:圖22圖22
2024-12-08 14:25
【摘要】二次函數(shù)cbxaxy???2的圖象(第二課時)清城中學【教材分析】本節(jié)課內(nèi)容是北師版教材九年級下冊第二章第4節(jié)《二次函數(shù)cbxaxy???2的圖象》的第二課時。是在前面已經(jīng)學習、探究了函數(shù)2yax?和函數(shù)2yaxc??的圖象與性質(zhì)后,繼續(xù)探究具有普遍意義和形式的函數(shù)cbx
2024-11-19 00:52
【摘要】復習與小結(jié)第二章一元二次方程知識網(wǎng)絡要點歸納考點整合課后作業(yè)一元二次方程一元二次方程的定義概念:①整式方程;②一元;③二次.一般形式:ax2+bx+c=0(a≠0)一元二次方程的解法直接開平方法配方法公式法224(40)2bbacxbaca???
2024-11-25 22:45