【摘要】一元二次不等式解法·典型例題能力素質(zhì)例若<<,則不等式--<的解是10a1(xa)(x)01a[]AaxBxa.<<.<<11aaCxaDxxa.>或<.<或>xaa11分析比
2024-11-11 05:06
【摘要】第4課時一元二次不等式及其解法的應(yīng)用...上一課時我們共同學(xué)習(xí)了一元二次不等式的解法,并能解簡單的一元二次不等式,一元二次不等式及其解法是一種重要的數(shù)學(xué)工具,是集合、函數(shù)、不等式等知識的綜合交匯點,地位重要,這一講我們將共同探究一元二次不等式及其解法的應(yīng)用.問題1:簡單的一元高次不等式和
2024-12-08 02:37
【摘要】陜西省咸陽市涇陽縣云陽中學(xué)高中數(shù)學(xué)(2)導(dǎo)學(xué)案北師大版必修5【學(xué)習(xí)目標】能利用一元二次不等式解決不等式恒成立問題會解決由一元二次不等式的解求參數(shù)的值或范圍的問題.【學(xué)習(xí)重點】一元二次不等式在求參數(shù)的值和范圍中的應(yīng)用,體現(xiàn)轉(zhuǎn)化思想【考綱要求】一元二次二次不等式根的分布問題
2024-11-19 15:46
【摘要】一元二次不等式及其解法同步練習(xí)(一)選擇題1、不等式047223???xxx的解集為(A、??????????4021xxx或B、??????????421xoxx或[C、?????????421xxD、?
2024-11-15 13:24
【摘要】課題:一元二次不等式的解法一元一次函數(shù)一元二次函數(shù)一元一次函數(shù)一元一次方程一元一次不等式它們之間有怎樣的聯(lián)系?請同學(xué)們解決如下問題:?(1)解方程2x-7=0?(2)作出函數(shù)y=2x-7的圖像?(3)解不等式2x-70請看下表:“三個一次”的聯(lián)
2024-11-09 22:22
【摘要】第一篇:一元二次不等式教案 § 【授課班級】10級微機化工班【授課人】相福香 【授課時間】2011年1月11日 一、教學(xué)目標: (1)使學(xué)生了解一元二次不等式的概念;(2)使學(xué)生掌握用配方法...
2024-10-21 16:04
【摘要】第七單元不等式第一節(jié)不等關(guān)系與一元二次不等式基礎(chǔ)梳理.nanb1.不等式的基本性質(zhì)(1)ab?b________a;(2)ab,bc?a________c;(3)ab?a+c________b+c;(4)ab,c0?ac________bc;(5)a>
2024-11-12 17:26
【摘要】§一元二次不等式的解法(1)教學(xué)目標(一)教學(xué)知識點1.一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系.2.一元二次不等式的解法.(二)能力訓(xùn)練要求1.通過由圖象找解集的方法提高學(xué)生邏輯思維能力,滲透數(shù)形結(jié)合思想.2.提高運算(變形)能力.(三)德育滲透目標滲透由具體到抽象思想.教學(xué)重點
2024-11-18 23:35
【摘要】含參數(shù)的一元二次不等式解法命題人:徐月玲2016年10月【學(xué)習(xí)目標】,并能解決一些實際問題。經(jīng)歷從實際情景中抽象出一元二次不等式模型的過程.、方程的聯(lián)系,會解一元二次不等式。,體會成功的快樂。【學(xué)習(xí)重點】從實際問題中抽象出一元二次不等式模型,圍繞一元二次不等式的解法展開,突出數(shù)形結(jié)合的思想?!緦W(xué)習(xí)難點】理解二次函數(shù)、一元二次方程與一元二次不等式解集的關(guān)系
2025-06-25 17:04
【摘要】基本不等式的證明課時目標;.1.如果a,b∈R,那么a2+b2____2ab(當(dāng)且僅當(dāng)______時取“=”號).2.若a,b都為____數(shù),那么a+b2____ab(當(dāng)且僅當(dāng)a____b時,等號成立),稱上述不等式為______不等式,其中________稱為a,b的算術(shù)平均數(shù),
2024-12-05 10:13
【摘要】第4課時一元二次不等式及其解法的應(yīng)用...上一課時我們共同學(xué)習(xí)了一元二次不等式的解法,并能解簡單的一元二次不等式,一元二次不等式及其解法是一種重要的數(shù)學(xué)工具,是集合、函數(shù)、不等式等知識的綜合交匯點,地位重要,這一講我們將共同探究一元二次不等式及其解法的應(yīng)用.問題1穿針引線法正二次不可分解因
2024-11-18 08:09
【摘要】基本不等式的應(yīng)用課時目標;(小)值問題.1.設(shè)x,y為正實數(shù)(1)若x+y=s(和s為定值),則當(dāng)______時,積xy有最____值,且這個值為________.(2)若xy=p(積p為定值),則當(dāng)______時,和x+y有最____值,且這個值為______.2.利用
2024-12-05 10:12