【摘要】數(shù)學(xué)命題?一、判斷與命題?1.判斷?判斷是對(duì)思維對(duì)象有所斷定的一種思維形式。這里所說的斷定,就是“肯定”或“否定”事物的某種性質(zhì)或事物之間有某種關(guān)系。如:是無理數(shù);它不是一位教師。?判斷作為一種思維形式,具有兩個(gè)基本的邏輯特征:?(1)必須有斷定。
2024-11-17 15:05
【摘要】第7課時(shí)雙曲線及其標(biāo)準(zhǔn)方程.、幾何圖形.a,b,c的關(guān)系,并能利用雙曲線中a,b,c的關(guān)系處理“焦點(diǎn)三角形”中的相關(guān)運(yùn)算.如圖所示,某農(nóng)場(chǎng)在M處有一堆肥料沿道路MA或MB送到稻田ABCD中去,已知|MA|=6,|MB|=8,|BC|=3,∠AMB=90°,能否在
2024-12-05 01:49
【摘要】第一課時(shí)命題及其關(guān)系(一)教學(xué)要求:了解命題的概念,會(huì)判斷一個(gè)命題的真假,并會(huì)將一個(gè)命題改寫成“若p,則q”的形式.教學(xué)重點(diǎn):命題的改寫.教學(xué)難點(diǎn):命題概念的理解.教學(xué)過程:一、復(fù)習(xí)準(zhǔn)備:閱讀下列語句,你能判斷它們的真假嗎?(1)矩形的對(duì)角線相等;(2)312?;(3)
2024-11-30 04:03
【摘要】圓錐曲線教學(xué)過程設(shè)計(jì)1.問題情境我們知道,用一個(gè)平面截一個(gè)圓錐面,當(dāng)平面經(jīng)過圓錐面的頂點(diǎn)時(shí),可得到兩條相交直線,當(dāng)平面與圓錐面的軸垂直時(shí),截得的圖形是一個(gè)圓,試改變平面的位置,觀察截得的圖形的變化情況。提出問題:用平面去截圓錐面能得到哪些曲線?2.學(xué)生活動(dòng)學(xué)生討論上述問題,通過觀察,可以得到以下三種不同的曲線:
2024-12-08 21:22
【摘要】解讀四種命題的相互關(guān)系基本的邏輯知識(shí)及推理能力是同學(xué)們?cè)谌粘I詈蛯W(xué)習(xí)中認(rèn)識(shí)問題、分析問題不可缺少的工具,然而四種命題的相互關(guān)系是邏輯知識(shí)的核心問題.因此理解掌握四種命題之間的相互關(guān)系非常有必要.一、要點(diǎn)精析1.四種命題定義(1)在兩個(gè)命題中,如果第一個(gè)命題.即原命題的條件是第二個(gè)命題的結(jié)論,且原命題的結(jié)論是第二個(gè)命題的條件,那么第二個(gè)命
2024-11-19 23:16
【摘要】江蘇省建陵高級(jí)中學(xué)2020-2020學(xué)年高中數(shù)學(xué)瞬時(shí)變化率(曲線上一點(diǎn)處的切線)導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)任務(wù)】1.了解曲線的切線的概念.2.掌握求函數(shù)在某一點(diǎn)處切線的斜率.【課前預(yù)習(xí)】1、借助直尺,用割線逼近切線的方法作出下列曲線在點(diǎn)P處的切線:2、已知曲線2yx?上一點(diǎn)A(1,2
2024-11-20 00:31
【摘要】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)橢圓的幾何性質(zhì)(1)教學(xué)案蘇教版選修1-1教學(xué)目標(biāo):1.掌握橢圓的基本幾何性質(zhì):范圍、對(duì)稱性、頂點(diǎn)、長(zhǎng)軸、短軸.2.感受如何運(yùn)用方程研究曲線的幾何性質(zhì).教學(xué)重點(diǎn):橢圓的幾何性質(zhì)——范圍、對(duì)稱性、頂點(diǎn).教學(xué)難點(diǎn):橢圓幾何性質(zhì)的研究過程,即如何運(yùn)用橢圓標(biāo)準(zhǔn)方程研究橢圓的幾何性質(zhì).教學(xué)過程:
2024-12-04 18:02
【摘要】第1課時(shí)導(dǎo)數(shù)與函數(shù)的單調(diào)性..對(duì)于函數(shù)y=x3-3x,如何判斷單調(diào)性呢?你能畫出該函數(shù)的圖像嗎?定義法是解決問題的最根本方法,但定義法較繁瑣,又不能畫出它的圖像,那該如何解決呢?問題1:增函數(shù)和減函數(shù)一般地,設(shè)函數(shù)f(x)的定義域?yàn)镮:如果對(duì)于定義域I內(nèi)某個(gè)區(qū)間D上的
2024-11-19 23:17
【摘要】第5課時(shí)簡(jiǎn)單的邏輯聯(lián)結(jié)詞“且”“或”“非”的含義.“且”“或”“非”的命題的真假及相關(guān)應(yīng)用.歌德是18世紀(jì)德國的一位著名文藝大師,一天,他與一位文藝批評(píng)家“狹路相逢”.這位批評(píng)家生性古怪,遇到歌德走來,不僅沒有相讓,反而賣弄聰明,一邊高傲地往前走,一邊大聲說道:
【摘要】《橢圓》導(dǎo)學(xué)橢圓是我們生活中常見的一種曲線,如汽車油罐的橫截面、太陽系中九大行星及其衛(wèi)星運(yùn)動(dòng)的軌道、部分彗星的軌道等等都是橢圓形。研究橢圓的方程及其幾何性質(zhì),可以幫助我們解決一些實(shí)際問題。橢圓是解析幾何的重要內(nèi)容,是高考常考的知識(shí)點(diǎn)之一。知識(shí)要點(diǎn)梳理1、橢圓的定義:平面內(nèi)與兩個(gè)定點(diǎn)F1、F2的距離的和等于常數(shù)(大于│F1F2│)的點(diǎn)的軌跡叫做
2024-12-05 03:04
【摘要】第4課時(shí)全稱量詞與存在量詞、存在量詞,能夠用符號(hào)表示全稱命題、特稱命題,并會(huì)判斷其真假.,應(yīng)首先判斷此命題是全稱命題還是特稱命題,也就是要找出語句中的全稱量詞或存在量詞.、特稱命題、含有一個(gè)量詞的命題的否定形式的真假的判斷方法,通過生活和數(shù)學(xué)中的豐富實(shí)例,了解數(shù)學(xué)知識(shí)的全面性和對(duì)稱性.美國作家馬克&
【摘要】第8課時(shí)雙曲線的簡(jiǎn)單性質(zhì),并能利用這些簡(jiǎn)單幾何性質(zhì)求標(biāo)準(zhǔn)方程..,提高解方程組和計(jì)算的能力,能利用雙曲線的定義、標(biāo)準(zhǔn)方程、幾何性質(zhì),解決與雙曲線有關(guān)的實(shí)際問題,提高分析問題與解決問題的能力.如圖,某工廠有一雙曲線型自然通風(fēng)塔,其外形是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所成的曲面,已知該塔最小半徑
2024-12-04 23:43