【摘要】課題:二次函數(shù)的圖象與性質(zhì)課型:新授課年級(jí):九年級(jí)教學(xué)目標(biāo):2yax?和2yaxc??的圖象,能說出它們圖象的開口方向、對稱軸、頂點(diǎn)坐標(biāo);并能夠比較它們圖象的異同,理解a與c對二次函數(shù)圖象的影響.2.經(jīng)歷探索二次函數(shù)2yax?和2yaxc??的圖象的作法和性質(zhì)的過程,進(jìn)一步獲得將表格、表達(dá)式、圖象三者
2025-11-29 05:07
【摘要】北師大版九年級(jí)下冊數(shù)學(xué)20)yaxbxca????二次函數(shù)(24,)4acba?b頂點(diǎn)坐標(biāo)為(-2a244acba?①當(dāng)a0時(shí),y有最小值=②當(dāng)a0時(shí),y有最大值=244acba?二次函數(shù)的最值求法情境導(dǎo)入
2025-06-17 13:01
【摘要】北師大版九年級(jí)下冊數(shù)學(xué)情境導(dǎo)入某超市有一種商品,進(jìn)價(jià)為2元,據(jù)市場調(diào)查,銷售單價(jià)是13元時(shí),平均每天銷售量是50件,而銷售價(jià)每降低1元,平均每天就可以多售出10件.若設(shè)降價(jià)后售價(jià)為x元,每天利潤為y元,則y與x之間的函數(shù)關(guān)系是怎樣的?本節(jié)目標(biāo)T恤衫銷售過程中最大利潤等問題的過程,體會(huì)二次函數(shù)是一類最優(yōu)化問題的數(shù)學(xué)模型
2025-06-12 01:19
【摘要】3確定二次函數(shù)的表達(dá)式..二次函數(shù)解析式有哪幾種表達(dá)方式?一般式:y=ax2+bx+c頂點(diǎn)式:y=a(x-h)2+k如何求二次函數(shù)的解析式?已知二次函數(shù)圖象上三個(gè)點(diǎn)的坐標(biāo),可用待定系數(shù)法求其解析式.交點(diǎn)式:y=a(x-x1)(x-x2)解析:設(shè)所求的二次函數(shù)為y=ax2+bx+c,由條件得:
2025-06-15 03:00
【摘要】3確定二次函數(shù)的表達(dá)式【基礎(chǔ)梳理】確定二次函數(shù)表達(dá)式的一般方法已知條件選用表達(dá)式的形式頂點(diǎn)和另一點(diǎn)的坐標(biāo)_______二次函數(shù)各項(xiàng)系數(shù)中的一個(gè)和兩點(diǎn)的坐標(biāo)_______三個(gè)點(diǎn)的坐標(biāo)_______頂點(diǎn)式一般式一般式【自我診斷】1.(1)確定二次函數(shù)的表達(dá)式一般需要三個(gè)條件.(
2025-06-14 06:48
2025-06-15 02:54
2025-06-12 13:43
【摘要】舊書不厭百回讀,熟讀精思子自知。
2025-11-29 05:11
【摘要】第二章二次函數(shù)知識(shí)點(diǎn)1用一般式(三點(diǎn)式)確定二次函數(shù)表達(dá)式(1,0),(2,0)和(0,2)三點(diǎn)的二次函數(shù)的表達(dá)式是(D)=2x2+x+2=x2+3x+2=x2-2x+3=x2-3x+2y軸交點(diǎn)的縱坐標(biāo)為1,且經(jīng)過點(diǎn)(2,5)和(-2,13),求這個(gè)二次函數(shù)的表達(dá)式.
2025-06-18 00:27
【摘要】讀書無疑者,須教有疑,有疑者,卻要無疑,到這里方是長進(jìn)。
2025-11-28 22:58
【摘要】“時(shí)間是個(gè)常數(shù),但對勤奮者來說,是個(gè)‘變數(shù)’。用‘分’來計(jì)算時(shí)間的人比用‘小時(shí)’來計(jì)算時(shí)間的人時(shí)間多59倍?!?---雷巴柯夫y是x的一次函數(shù),請你添加條件___________________,則此函數(shù)的表達(dá)式為_________.已知一次函數(shù)y=kx+b圖象上兩點(diǎn)的坐標(biāo),
2025-11-08 08:35
【摘要】5二次函數(shù)與一元二次方程,體會(huì)方程與函數(shù)之間的聯(lián)系.x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)數(shù)根、兩個(gè)相等的實(shí)數(shù)根和沒有實(shí)數(shù)根.x軸交點(diǎn)的橫坐標(biāo).ax2+bx+c=0的求根公式是什么?當(dāng)b2-4ac≥0時(shí),當(dāng)b2-4ac0時(shí),方程無實(shí)數(shù)根.aacbbx2
2025-06-15 02:55